Процесс запуска спутника. Как запускаются спутники

Как нелегально запустить спутники March 11th, 2018

В январе 2018 года произошел первый в истории человечества успешный нелегальный запуск спутника в космос, вернее сразу четырех небольших экспериментальных орбитальных дронов.

Провернуть нелегальный запуск спутников под названием SpaceBee-1, 2, 3 и 4 в космос удалось американской компании Swarm Technologies, которая договорилась с индийскими специалистами о том, что они дополнительно загрузят четыре дрона размером с книгу на ракету-носитель Polar Satellite Launch Vehicle вместе с тремя десятками других спутников.

Индийская организация космических исследований (ISRO) еще в 2000-х годах задалась целью вывести на орбиту сотни спутников для нужд государства и бизнеса, и добилась в этом направлении заметных успехов, так что «прихватить» с собой несколько коммерческих устройств для них не составило особого труда.


Согласно открытым данным, последний успешный пуск ракеты PSLV со спутниками Индии, США, Канады, Финляндии, Франции и Южной Кореи состоялся 12 января 2018 года.

Лишь после того, как спутники Swarm Technologies оказались в космосе, надзорные органы США подняли тревогу: нормально отслеживать мелкие объекты на орбите сложно, но при этом они представляют смертельную опасность любому устройству или кораблю, с которым могут столкнуться.

Правовая коллизия с Swarm Technologies заключается в том, что ответственность за ее действия в космосе несет не Индия, а США, где зарегистрирована эта компания. Особенно негодует по этому поводу научное сообщество, которое требует разобраться, каким образом группа частных лиц в тайне от государства вывела свои спутники на орбиту в то время, когда строго отчитываться о подобных вещах, за редчайшим исключением, обязан даже Пентагон.

Как пишет другое сетевое издание IEEE Spectrum, спутники SpaceBee-1, 2, 3 и 4 предназначены для «двусторонней спутниковой связи и передачи данных из США». Про саму компанию Swarm Technologies известно, что она «выросла» из известного в профессиональных кругах стартапа Silicon Valley в Калифорнии.

Компания была основана два года назад канадским аэрокосмическим инженером, бывшим сотрудником NASA и Google Сарой Спанджело и преподавателем Мичиганского университета, независимым разработчиком Бенджамином Лонгмайером, который продал свою предыдущую компанию Aether Industries корпорации Apple.

В компании всего пять сотрудников, и вся эта команда работает над системой, которая позволит бизнесу использовать возможности спутникового интернета для создания единой сети из морских судов, грузовиков, автомобилей, сельскохозяйственной техники и вообще чего угодно, чему можно присвоить IP-адрес. Интернет всем этим устройствам в любой точке земного шара и должны раздавать SpaceBee-1, 2, 3 и 4, а также их будущие аналоги.

Предположительно, собственные спутники понадобились Swarm Technologies для того, чтобы показать потенциальным инвесторам, насколько дешевым может быть спутниковый интернет при правильном подходе к делу в рамках концепции «Интернета вещей».

Все бы ничего, но в декабре 2017 года Федеральная комиссия по связи США


Продолжаем наш цикл статей «Все обо всем». В этот раз поговорим о спутниках.

Не так давно спутники были экзотикой и сверх-секретными устройствами. В основном они использовались в военных целях, навигации и шпионаже. Теперь же они является неотъемлемой частью современной жизни. Мы может увидеть их в прогнозировании погоды, телевидении и даже в обычных телефонных звонках. Спутники также часто играют вспомогательную роль в некоторых областях:

  • Некоторые газеты и журналы быстры потому, что они отправляют материалы на печать в разные типографии через спутники, чтобы ускорить локальную дистрибьюцию.
  • Перед тем как передать сигнал по проводам пользователям кабельного телевидения, компании-провайдеры используют спутники для передачи сигнала.
  • В последнее время небывалую популярность преобрели геолокационные возможности, предоставляемые системами GPS и ГЛОНАСС. С помощью них мы может быстрее и точнее добраться до необходимого месяца.
  • Товары, которые мы покупаем, доставляются производителями поставщика более эффективно, благодаря логистики с использованием геолокации с помощью GPS и ГЛОНАСС.
  • Радиомаяки с упавших самолетов и терпящих бедствие кораблей отправляют через спутник сигналы командам спасения.
В этой статье мы постараемся рассмотреть принципы функционирования спутников и то, что они делают. Мы посмотрим внутрь спутника, исследуем различные типы орбит и то, как задачи спутника воздействуют на выбор орбиты. И постараемся рассказать как увидеть и проследить за спутником самостоятельно!

Что такое Спутник?

Спутник в общем - это объект, которые вращается вокруг планеты по круговой или эллиптической орбите. Например, Луна - это природный естественный спутник Земли, однако существует еще много сделанных человеком (искусственных) спутников, которые как правило ближе к Земле.

Путь по которому следует спутник называется орбитой. Самая далекая от Земли точка орбиты называется апогеем, ближайшая - перигеем.

Искусственные спутники не являются продуктами массового производства. Большинство спутников были специально произведены для выполнения предназначенных им функций. Исключение составляют спутники GPS/ГЛОНАСС (которых около 20 копий для каждой из систем) и спутники системы Iridium (которых больше 60 копий, они используются для передачи голосовой связт).

Существует также около 23 000 объектов, которые являются космическим мусором. Эти объекты имеют достаточный размер для того, чтобы улавливаться радаром. Они либо случайно оказались на орбите, либо исчерпали свою полезность. Точное число зависит от того, кто считает. Полезный груз, который попал на неправильную орбиту, спутники у которых сели батареи и также остатки разгонных блоков ракет - все это составляет космический мусор. Например, этот онлайн каталог спутников насчитывает около 26 000 объектов.

Хотя любой объект на орбите земли вообще-то можно назвать спутником, термин «спутник» обычно используется для описания полезного объекта размещенного на орбите для выполнения некоторых важных задач. Нам часто приходится слышать о погодных спутниках, спутниках связи и научных спутниках.

Чей спутник первым оказался на орбите Земли?

Вообще, самым первым спутником Земли по праву стоит считать Луну:)

Для нашей общей радости, первым искусственным спутником Земли был «Спутник 1», запущенный Советским Союзом 4 октября 1957 года. Ура, товарищи!

Однако, из-за существовавшей в то время строжайшей секретности, в свободном доступе нет фотографий того знаменитого запуска. Спутник-1 имел длину 23-дюйма (58 сантиметров), весил 184 фунта (83 килограмма) и имел форму металлического шара. Однако, для того времени это было важное достижение. Содержимое спутника по современным меркам кажется скудным:

  • Термометр
  • Батарея
  • Радио передатчик - изменял тон своих звуков согласно показаниям термометра
  • Азот - создавал давление внутри спутника
На внешней части было размещено четыре тонких антенны, которые передавали сигнал на коротковолновых частотах, которые сейчас используются как гражданские (27 МГц). Согласно настольной книге космических спутников Энтони Кертиса:

После 92 дней, гравитация сделала свое дело и Спутник-1 сгорел в атмосфере Земли. Тридцать дней спустя после запуска Спутник-1, собака Лайка совершила полет на полутонном спутнике с воздухом. Этот спутник сгорел в атмосфере в апреле 1958 года.

Спутник-1 это хороший пример того, каким простым может быть спутник. Как мы увидим дальше, современные спутники гораздо более сложными, но основная идея проста.

Как спутники запускают на орбиту?


Все современные спутники попадают на орбиту с помощью ракет. Некоторые доставлялись на орбиту в грузовом отсеке шаттлов. Возможность запуска спутников на орбиту имеют несколько стран и даже коммерческих компаний, и теперь нет ничего необычного в доставке на орбиту спутника весом несколько тонн.

Для большинства запланированных запусков, ракета как правило располагается вертикально вверх. Это позволяет ей пройти плотные слои атмосферы быстро и с минимальными затратами топлива.

После того, как ракета запущена вертикально вверх, система управления ракетой используется инерциальную систему наведения для управления соплами ракеты и наводит ее на расчетную траекторию. В большинстве случаев ракета направляется на восток, потому что сама Земля вращается на восток, что позволяет добавить ракете «бесплатное» ускорение. Сила такого «бесплатного» ускорения зависит от скорости вращения Земли в месте запуска. Самое большое ускорение - на экваторе, там где расстояние вокруг Земли наибольшее, а следственно и скорость вращения тоже.

Насколько велико ускорение при экваториальном запуске? Для грубой оценки мы можем вычислить длину экватора Земли путем умножения ее диаметра на число пи (3.141592654...). Диаметр земли примерно 12 753 километра. Умножая на пи получаем длину окружности около 40 065 километров. Для прохождения всей окружности в 24 часа точка на поверхности Земли должна двигаться со скоростью 1 669 км/ч. Запуск с Байконура в Казахстане не дает такого большого ускорения от вращения Земли. Скорость вращения Земли в районе Байконура около 1 134 км/ч, а в районе Плесецка вообще 760 км/ч. Таким образом запуск с экватора дает большее «бесплатное» ускорение. Вообще Земля имеет не совсем форму сферы - она приплюснута. Поэтому наша оценка Длины окружности Земли несколько неточна.

Но подождите, скажете Вы, если ракеты способы достигать скоростей в тысячи километров в час, то что даст небольшой прирост? Ответ состоит в том, что ракеты, вместе с топливом и полезным грузом, очень тяжелые. Например, ракета-носитель протон согласно данным википедии имеет стартовую массу 705 тонн. Для ускорения такой массы даже до 1 134 км/ч требуется огромное количество энергии, а следовательно и большой объем топлива. Поэтому запуск с экватора дает ощутимые выгоды.

Когда ракета достигает очень разреженного воздуха на высоте примерно 193 километра, система управления ракетой включает небольшие двигатели, достаточные для поворота ракеты в горизонтальное положение. Затем спутник отделяется от ракеты. Затем ракета снова включает двигатели для обеспечения некоторого разделения ракеты и спутника.

Инерциальный системы наведения

Ракета должна управляться очень точно для выведения спутника на требуемую орбиту, и ошибки в этом деле очень дорого стоят (вспомните неудачи Роскосмоса со спутниками ГЛОНАСС или зондом Фобос-Грунт, которые оказались не на той орбите, на какой следовало бы). Инерциальные системы наведения внутри ракет делают такое управление возможным. Такая система определяет точное положение ракеты и ее направления путем измерения ускорения ракеты с использованием гироскопов и акселерометров. Расположенные в кардановом подвесе , оси гироскопа всегда показывают в одном направлении. Кроме того, платформа гироскопов содержит акселерометры, которые измеряют ускорение в трех разных осях. Если системе управления известно первоначальное местоположение ракеты в момент запуск и ускорения в момент полета, она сможет рассчитать положение ракеты и ориентацию в пространстве.

Орбитальная скорость и высота


Ракета должна разогнаться до скорости как минимум 40 320 км/ч (11.2 км/с) чтобы полностью выйти из Земной гравитации и отправиться в космос. Эта скорость называется второй космической скоростью и для разных небесных тел она разная.

Вторая космическая скорость земли куда больше, чем скорость требуемая для помещения спутников на орбиту. Спутникам не требуется выходить из гравитации Земли, им нужно балансировать относительно нее. Орбитальная скорость - это скорость требуемая для достижения равновесия между гравитационным притяжением и инерцией движения спутника. В среднем эта скорость составляет 27 359 км/ч на высоте примерно 242 километра. Без гравитации, инерция спутника будет выталкивать его в космос. Хотя даже если гравитация присутствует, то слишком большая скорость спутника выведет его с орбиты Земли в открытый космос. С другой стороны, если спутник будет двигаться медленно, то под действием гравитации он упадет обратно на Землю. Если спутник будет иметь определенную правильную скорость, то гравитации будет уравновешена инерцией спутника, сила тяжести Земли будет достаточна для того, чтобы спутник двигался по круговой или эллиптической орбите, а не улетел в космос по прямой линии.

Орбитальная скорость спутника зависит от того, на какой высоте последний находится. Чем ближе к Земли - тем больше требуемая скорость. На высоте 200 километров, требуемая орбитальная скорость составляет около 27 400 км/ч. Для поддержания орбиты в 35 786 км, спутник должен двигаться по орбите со скоростью около 11 300 км/ч. Такая орбитальная скорость позволит спутнику сделать один оборот вокруг Земли за 24 часа. Так как сама Земля вращается со скоростью 24 часа, спутник на высоте 35 786 км будет оставаться строго над одной и той же точкой на поверхности Земли. Такая орбита носит название «геостационарная». Геостационарные орбиты идеальны для погодных спутников и спутников связи.

Луна имеет «высоту» относительно Земли 384 400 километров, а ее орбитальная скорость составляет 3 700 км/ч. Она совершает полный оборот по своей орбите за 27.322 дня. Заметьте, что ее орбитальная скорость ниже, потому что она находится дальше искусственных спутников.

Вообщем, чем выше орбита, тем дольше спутник может находится на орбите. На низких высотах, спутник входит в слои атмосферы, которая создает трение. Трение отнимает часть энергии движения спутника, и он попадает в более плотные слои и, падая на Землю, сгорает в атмосфере. На больших высотах, где почти вакуум, трения не возникает и спутник может оставаться на орбите веками (возьмем Луну, например).

Спутники, как правило, сначала имеют эллиптическую орбиту. Наземные станции управления используют небольшие реактивные двигатели спутника для корректировки орбиты. Цель - сделать орбиту круговой настолько, насколько это возможно. Включение реактивного двигателя в апогее орбиты (наиболее удаленная точка), и приложение силы в направлении полета смещают перигей дальше от Земли. В результате орбита приближается по форме к круговой.

Продолжение следует…

Большой серьезный спутник, например из тех, что обслуживают систему GPS, весит полторы-две тонны, а стоимость его изготовления и вывода на орбиту превышает $100 млн. Порядок цен космический, и тут уж ничего не поделаешь — даже килограмм глины, отправленный в космос, станет почти без преувеличения золотым. Но если этих килограммов чего бы то ни было не так много, то запуск космического аппарата может стать куда более бюджетным мероприятием.

Первый в мире искусственный спутник Земли хоть и не содержал в себе ничего, кроме радиопередатчика, весил солидные 83,6 кг. С тех пор электроника шагнула вперед, на порядки миниатюризировалась, и вот уже спутники, весящие от нескольких килограммов до нескольких граммов, могут, как оказывается, быть вполне функциональными. Как только это выяснилось, освоение космоса перестало быть исключительной прерогативой государственных ведомств и огромных ракетно-космических корпораций: наступило время студенческого и любительского спутникостроения, вместе с которым мало-помалу поднимается вторая волна космической романтики. И Россию эта волна также не обошла стороной.

CubeSat (Спутник-кубик) — наноспутник, разработанный Политехническим университетом штата Калифорния и Стэнфордским университетом специально для студенческих и любительских экспериментов в космосе. Его размеры 10 x 10 x 10 см, а вес — 1.3 кг. В наши дни комплект для сборки наноспутника можно купить в магазине.

Нашли друг друга

Можно ли было себе представить лет 20−40 назад, что создание орбитального космического аппарата станет темой студенческой работы? Сегодня студенты кафедры конструирования электронно-вычислительных средств Юго-Западного государственного университета (Курск) создают аппаратуру для отправки на орбиту. «Мы не единственный университет в России, в стенах которого разрабатываются спутники, — рассказывает начальник Центра разработки малых космических аппаратов доцент Валерьян Пиккиев. — Есть аппараты, сделанные в МГТУ им. Баумана, МГУ, Военно-космической академии им. А.Ф. Можайского, однако это все-таки уже серьезные профессиональные работы, в которых задействован весь научный потенциал наших ведущих вузов. У нас же и оборудование, и эксперименты, которые будут проводиться с помощью этой аппаратуры, — все придумывают сами студенты».

Кафедра конструирования электронно-вычислительных средств ЮЗГУ была создана в 1965 году и занималась разработкой различной электроники для отечественных предприятий, в том числе приборов военного назначения. Среди них были и вакуумметры — аппараты для измерения концентрации частиц в разреженных средах. Эти устройства вызвали интерес со стороны предприятий ракетно-космической отрасли — НПО им. Лавочкина и РКК «Энергия».


Полет в старом костюме

К этому моменту «Энергия» уже имела свою собственную программу создания и запуска малых спутников. «Все началось 15 лет назад, — рассказывает ведущий специалист РКК «Энергия» Сергей Самбуров. — В 1997 году космонавт Валерий Поляков предложил отметить 40-летний юбилей первого спутника запуском его уменьшенной копии. Предложение было принято, причем в создании аппарата принимали участие (пусть символическое) школьники из Кабардино-Балкарии и французского Реюньона. Спутник не только внешне походил на свой прообраз, но и воспроизводил его «начинку», включая передатчик сигнала «бип-бип-бип». Разумеется, для этого аппарата отдельного носителя не использовали — его доставили кораблем «Прогресс» на орбитальную станцию «Мир», а там во время планового выхода в космос «забросили» в космическое пространство».

Запуск уменьшенной копии первого ИСЗ вызвал настоящий ажиотаж среди радиолюбителей во всем мире, особенно среди тех, кто с ностальгией вспоминал молодость и радиосигнал спутника 1957 года. Тему было решено продолжить, и на следующий год был запущен еще один радиолюбительский спутник, который транслировал в эфир песни и обращался к аудитории планеты Земля на разных языках. Технология запуска спутников с борта орбитальных станций совершенствовалась, и в 2002 году РКК «Энергия» совместно с Институтом космических исследований отправила на орбиту небольшой аппарат «Колибри» с научной аппаратурой. Запускали его так: при отстыковке «Прогресса» от МКС его люк оставался незадраенным. Внутри корабля был установлен контейнер, который при пережигании пиропатроном удерживающего шнура буквально выстреливал спутником.


А в 2006 году РКК «Энергия» совместно с представителями американской радиолюбительской корпорации AMSAT дали жизнь одному из самых оригинальных проектов в истории освоения космоса. Новый радиолюбительский спутник было решено сделать на основе отслужившего свое скафандра «Орлан-М», который использовался как платформа для монтажа доставленной на МКС аппаратуры. Научного оборудования на спутнике «Радиоскаф-1» (он же SuitSat-1) не было — только антенны (установленные на шлеме), радиостанция, блок «дигитолкер» для трансляции звуковых программ, два фотоаппарата (цифровой и пленочный) и аккумулятор. Интересно, что штатный аккумулятор от скафандра не подошел — он рассчитан на небольшое количество циклов зарядки-разрядки, а спутник, испытывающий на орбите перепады температур от минус 100 до плюс 100 градусов Цельсия, израсходовал бы ресурс такого устройства очень быстро. Тем более что «Радиоскаф-1» не имел солнечных батарей и полагался только на ресурс аккумулятора. В феврале космонавт МКС Валерий Токарев, выйдя в открытый космос, оттолкнул от себя старый скафандр с новой начинкой, и спутник отправился в двухнедельную миссию.

Скаф и шкаф

Несмотря на всю экзотичность проекта, скафандр оказался весьма интересной платформой для малых спутников. Во‑первых, его не надо доставлять на МКС, так как он уже туда доставлен. Во‑вторых, продолговатая форма открывает возможности пассивной стабилизации за счет неравномерного распределения груза (более тяжелая часть всегда будет «тяготеть» к Земле, и спутник не будет вращаться вокруг своей оси). Наконец, в скафандре есть баллон, в котором может содержаться кислород или другой газ под давлением в 100 атм. Это можно использовать для развертывания надувных элементов спутника.


Однако пока в РКК «Энергия» зрел план «Радиоскафа-2» — снова на базе скафандра, случилась неувязка. Очередной старый скафандр, на котором хотели смонтировать спутник, пришлось выкинуть с МКС, не дожидаясь готовности аппаратуры для второго спутника: уж очень место в дефиците. «Ждать еще пять лет, пока состарится новый скафандр, пришедший на замену старому, мы не могли, — говорит Сергей Самбуров. — Поэтому, как мы шутим, пришлось вместо «Радиоскафа» сделать «Радиошкаф», то есть конструкцию в виде прямоугольного параллелепипеда с размерами 500 x 500 x 300 мм. Проект приурочили к полувековому юбилею полета Гагарина, а сам аппарат получил имя «Кедр» в честь позывного первого космонавта планеты». Было у него и еще одно имя — ARISSat-1, по названию международной ассоциации радиолюбителей, работающих со спутниками, которые запущены с борта МКС. Спутник делали в международном сотрудничестве, но также впервые активное участие в его создании приняла кафедра конструирования электронно-вычислительных систем ЮЗГУ, которая стала полноправным партнером проекта «Радиоскаф» в 2010 году. Здесь и пригодилось научное оборудование, сконструированное курскими студентами, — те самые вакуумметры. Конечно же, создатели «Кедра» не забыли о радиолюбителях, для которых была предусмотрена трансляция сообщений на разных языках мира. Спутник отправили на орбиту с МКС 3 августа 2011 года, и он успешно выполнил свою миссию, в частности, произведя замеры плотности частиц в безвоздушном пространстве на орбитах разных высот.


Наноспутник над Андами

«Мы продолжаем работы по программе «Радиоскаф» в сотрудничестве с РКК «Энергия», которая частично финансирует нашу деятельность и берет на себя запуск студенческих и радиолюбительских аппаратов в рамках собственных программ экспериментов, — рассказывает Валерьян Пиккиев. — Очередной спутник — «Часки-1» — мы делаем совместно со студентами Технического университета из Перу. Это будет спутник в популярном в мире наноформате CubeSat (куб со сторонами 10 см, вес 1,3 кг). Научной аппаратуры на аппарате не будет, однако мы намерены испытать специально сконструированные рамки, дающие возможность пассивной стабилизации спутника по линиям магнитного поля Земли. Кроме того, на «Часки-1» установят камеры с невысоким разрешением. Они позволят делать фото земной поверхности (две камеры в видимом спектре, две инфракрасные), изображение с них окажется доступным радиолюбителям. Будем также отрабатывать командную линию на частоте 144, 430 МГц. Все это позволит нам уже в следующем совместном спутнике запускать научную аппаратуру — в частности, новое поколение наших вакуумметров, которые способны теперь регистрировать не только концентрацию частиц, но и определять их природу».

Куда кидать — вот в чем вопрос

Конечно, наноспутники можно запускать по‑разному. Есть вариант помещения кассеты со спутниками между второй и третьей ступенями ракеты, выводящей на орбиту, скажем, тяжелый спутник связи. Разрабатываются концепции двухступенчатого запуска «самолет-ракета», наподобие проекта LauncherOne компании Virgin Galactic. Однако пока существует МКС, она будет представлять собой, пожалуй, самую надежную платформу для подобных запусков, и с этой целью ею пользуются как российские космонавты, так и астронавты США и Японии. Однако и здесь человеческий фактор можно минимизировать.


История российского студенческого и радиолюбительского спутникостроения началась в 1996 году, когда по инициативе космонавта Валерия Полякова с борта станции «Мир» была запущена уменьшенная копия первого в мире ИСЗ. Полет вызвал большой интерес радиолюбителей во всем мире.

«Сейчас в рамках нашей программы мы делаем пушку для запуска маленьких спутников, — говорит Сергей Самбуров. — Это будет коробка размером с обувную, а внутри разместится пружина, которая по команде в нужный момент вытолкнет спутник. А это не так просто на самом деле, поскольку аппарат надо запустить в правильном направлении, придав ему при этом вращение. Если просто бросить спутник в сторону от станции, то по законам баллистики он к станции и вернется. Надо кидать по вектору движения или против вектора, но по вектору нельзя, потому что тогда спутник поднимется на более высокую орбиту и будет над станцией летать, а если станция орбиту скорректирует, может произойти столкновение. Вероятность небольшая, но она есть. Надо кидать против вектора, и тогда аппарат уходит под станцию, а затем обгоняет ее и уже никогда с ней не столкнется». Техника запуска спутника вручную достаточно сложна, и еще на Земле космонавты отрабатывают ее на тренировках в гидробассейне. Если же будет создано автоматическое устройство отстреливания спутников, то экипажу нужно будет сделать ровно две вещи: вытащить устройство наружу, в космос, а потом, по возвращении на станцию, дать команду на пуск.


Полезно и безопасно

Сегодня в РКК «Энергия» создано специальное подразделение, занимающееся малыми космическими аппаратами. Главная задача его деятельности — образовательная. «Студенты, которые еще во время обучения приняли участие в создании космических аппаратов, придут к нам специалистами с опытом практического конструирования. Для нас это очень важно, — говорит Сергей Самбуров. — Кроме того, не надо думать, что малые спутники годятся только для обучения и хобби. На них можно отрабатывать технологии движения и маневрирования, системы стабилизации, работу новых приборов для вполне серьезных задач. А при сравнительно невысокой стоимости этих аппаратов ниже и цена ошибки, которая в противном случае может сгубить большой и дорогостоящий спутник или зонд».

Остается лишь последний вопрос: не станет ли общемировое увлечение наноспутниками еще одним фактором загрязнения околоземного пространства — ведь космического мусора на орбитах и так достаточно. «Тут не о чем беспокоиться, — объясняет Валерьян Пиккиев. — Любительские спутники не относятся к орбитальным долгожителям. С высоты МКС (примерно 400 км) наши спутники летят к плотным слоям атмосферы всего полгода. Кроме того, мы изготавливаем их из таких материалов, которые легко сгорают от трения об воздух, так что ни одно из наших детищ никому и никогда на голову не обрушится.

[:RU]Завтра весь мир празднует День космонавтики. 12 апреля 1961 года Советский союз впервые в истории запустил пилотируемый корабль на борту которого был Юрий Гагарин. Сегодня мы покажем, как с космодрома «Байконур» в конце 2011 года с помощью ракетоносителя “Протон-М” был запущен второй казахстанский телекоммуникационный спутник “КазСат-2” (KazSat-2). Как аппарат был запущен на орбиту, в каком он состоянии, как и откуда производится его управление? Об этом мы узнаем в этом фоторепортаже.

1. 12-е июля 2011-го года. Cамую тяжелую российскую ракету космического назначения “Протон-М” с казахстанским спутником связи №2 и американским SES-3 (OS-2) вывозят на стартовую позицию. “Протон-М” запускают только с космодрома “Байконур”. Именно здесь существует необходимая инфраструктура для обслуживания этой сложнейшей ракетно-космической системы. Российская сторона, а именно производитель аппарата, космический центр имени Хруничева, гарантирует, что “КазСат-2” прослужит не менее 12-ти лет.

С момента подписания договора о создании спутника проект несколько раз перерабатывался, а сам запуск откладывался, по меньшей мере, три раза. В результате “КазСат-2” получил принципиально новую элементную базу и новый алгоритм управления. Но самое главное, на спутнике были смонтированы новейшие и очень надежные навигационные приборы, производства французского концерна ASTRIUM.

Это гироскопический измеритель вектора угловой скорости и астродатчики. С помощью астродатчиков спутник ориентирует себя в пространстве по звездам. Именно отказ навигационного оборудования привел к тому, что первый “КазСат” был фактически потерян в 2008-м году, что почти вызвало международный скандал.

2. Путь ракеты с подключенными к ней системами энергоснабжения и термостатирования головной части, где расположены разгонный блок “Бриз-М” и спутники занимает около 3-х часов. Скорость движения специального железнодорожного состава 5-7 километров в час, состав обслуживает команда специально подготовленных машинистов.

Еще одна группа сотрудников службы безопасности космодрома осматривает железнодорожные пути. Малейшая не расчетная нагрузка может повредить ракету. В отличие от своего предшественника, “КазСат” стал более энергоемким.

Количество передатчиков увеличилось до 16-ти. На “КазСате-1” их было 12. А суммарная мощность транспондеров увеличена до 4 с половиной киловатт. Это позволит прокачивать на порядок больше всевозможных данных. Все эти изменения отразились на стоимости аппарата. Она составила 115 миллионов долларов. Первый аппарат обошелся Казахстану в 65 миллионов.

3. За всем происходящим спокойно наблюдают обитатели местной степи. Корабли пустыни)

4. Размеры и возможности этой ракеты на самом деле поражают воображение. Ее длина составляет 58,2 метра, масса в заправленном состоянии 705 тонн. На старте тяга 6-ти двигателей первой ступени ракетоносителя составляет около 1 тыс. тонн. Это позволяет выводить на опорную околоземную орбиту объекты массой до 25-ти тонн, а на высокую геостационарную (30 тыс. км. от поверхности Земли)– до 5-ти тонн. Поэтому “Протон-М” незаменим, когда речь идет о запуске телекоммуникационных спутников.

— Двух одинаковых космических аппаратов просто не бывает, потому что каждый космический аппарат – это совершенно новые технологии. За короткий период, бывает так, что приходится менять совершенно новые элементы. В “КазCате-2” применены те новые передовые технологии, которые на тот момент уже были. Была поставлена часть оборудования европейского производства, в части той, где у нас были отказы на “КазСат-1”. Я думаю, что оборудование, которое у нас сейчас работает на “КазСат-2” должно показать хорошие результаты. Оно имеет достаточно хорошую летную историю

5. На космодроме в настоящее время имеются 4 стартовые позиции для ракетоносителя “Протон”. Однако, только 3 из них, на площадках № 81 и № 200 находятся в рабочем состоянии. Ранее пусками этой ракеты занимались только военные из-за того, что работа с токсичным топливом требовала жесткого командного руководства. Сегодня комплекс демилитаризирован, хотя в составе боевых расчетов очень много бывших военных, снявших погоны.

Орбитальная позиция второго “КазСата” стала намного удобнее для работы. Это 86 с половиной градусов восточной долготы. Зона покрытия включает всю территорию Казахстана, часть Центральной Азии и России.

6. Закаты на космодроме “Байконур” исключительно технологические! Массивная конструкция чуть правее центра снимка – это “Протон-М” с подведенной к нему фермой обслуживания. С момента вывоза ракеты на стартовую позицию площадки № 200, и до момента старта проходит 4 суток. Все это время проводится подготовка и тестирование систем “Протона-М”. Примерно за 12 часов до старта проводится заседание государственной комиссии, которая дает разрешение на заправку ракеты топливом. Заправка начинается за 6 часов до старта. С этого момента все операции становятся необратимыми.

7. Какую же выгоду получает наша страна обладая собственным спутником связи? Прежде всего – это решение проблемы информационного обеспечения Казахстана. Свой спутник поможет расширить спектр информационных услуг для всего населения страны. Это услуга электронного правительства, интернета, мобильной связи. Самое главное, что казахстанский спутник позволит частично отказаться от услуг иностранных телекоммуникационных компаний, предоставляющих нашим оператором услуги по ретрансляции. Речь идет о десятках миллионов долларов, которые будут теперь уходить не за рубеж, а поступать в бюджет страны.

Виктор Лефтер, президент Республиканского центра космической связи:

— Казахстан имеет достаточно большую территорию, по сравнению с другими странами. И надо понимать, что в каждый населенный пункт, в каждую деревенскую, сельскую школу мы не сможем подать те услуги связи, которые ограничены средствами кабельных и других систем. Космический аппарат решает эту проблему. Практически закрывается вся территория. Более того, не только территория Казахстана, но и часть территории соседних государств. И спутник – это стабильная возможность обеспечения связью

8. Различные модификации ракетоносителя “Протон” эксплуатируются с 1967-го года. Его главным конструктором был академик Владимир Челомей и его КБ (в настоящее время — КБ «Салют», филиал ГКНПЦ им. М.В.Хруничева). Можно смело утверждать, что все впечатляющие советские проекты по освоению околоземного пространства и изучению объектов Солнечной системы были бы неосуществимы без этой ракеты. Кроме того, “Протон” отличается очень высокой для техники подобного уровня надежностью: за все время его эксплуатации было произведено 370 пусков, из них 44 — неудачные.

9. Единственный и главный недостаток “Протона” – это крайне токсичные компоненты топлива: несимметричный диметилгидразин (НДМГ), или как его еще называют «гептил» и азотный тетраоксид («амил»). В местах падения первой ступени (это территории в районе города Джезказгана), происходит загрязнение окружающей среды, что требует проведения дорогостоящих операций по ее очистке.

Ситуация серьезно усугубилась в начале 2000-х, когда произошло подряд три аварии ракетоносителя. Это вызвало крайнее недовольство властей Казахстана, потребовавших от российской стороны больших компенсаций. С 2001-го года старые модификации ракетоносителя были заменены на модернизированный “Протон-М”. В нем стоит цифровая система управления, а также система стравливания не сгоревших остатков топлива в верхних слоях ионосферы.

Таким образом, удалось существенно снизить ущерб для окружающей среды. Кроме того, разработан, но пока еще остается на бумаге проект экологически безопасного ракетоносителя “Ангара”, который использует в качестве компонентов топлива керосин и кислород, и который должен постепенно заменить “Протон-М”. Кстати, комплекс ракетоносителя “Ангара”на “Байконуре” будет называться “Байтерек” (в переводе с казахского “Тополь”.)

10. Именно надежность ракеты в свое время привлекла американцев. В 90-х годах было создано совместное предприятие ILS, которое позиционировало ракету на американском рынке телекоммуникационных систем. Сегодня большинство американских спутников связи гражданского назначения запускаются “Протоном-М” с космодрома в казахстанской степи. Американский SES-3 (принадлежащий компании SES WORLD SKIES), который находится в головной части ракеты вместе с казахстанским “КазСатом-2” – один из множества запускаемых с “Байконура”.

11. Кроме российского и американского флагов, на ракете размещен казахстанский а также эмблема Республиканского центра космической связи – организации, которая сегодня владеет и управляет спутником.

12. 16 июля 2011-го года 5 часов 16 минут и 10 секунд утра. Кульминационный момент. К счастью, все проходит благополучно.

13. Через 3 месяца после запуска. Молодые специалисты – ведущий инженер отдела управления спутником Бекболот Азаев, а также его коллеги инженеры Римма Кожевникова и Асылбек Абдрахманов. Вот эти ребята и управляют “КазСатом-2”.

14. Акмолинская область. Небольшой, и до 2006-го года ничем не примечательный районный центр Акколь получил широкую известность 5 лет назад, когда здесь построили первый в стране ЦУП – центр управления полетами орбитальных спутников. Октябрь здесь холодный, ветреный и дождливый, однако именно сейчас наступает самая горячая пора для тех людей, которые должны придать спутнику “КазСат-2” статус полноценного и важного сегмента казахстанской телекоммуникационной инфраструктуры.

15. После потери первого спутника в 2008-м году в Аккольском центре космической связи была проведена серьезная модернизация. Она позволяет уже сейчас управлять сразу двумя аппаратами.

Бауржан Кудабаев, вице-президент Республиканского центра космической связи:

— Было установлено специальное программное обеспечение, поставлено новое оборудование. Перед вами стойка командно-измерительной системы. Это поставка американской фирмы Vertex, как и было на “КазСат-1”, но уже новой модификации, улучшенная версия. Применены разработки компании “Российские космические системы”. Т.е. это все — разработки сегодняшнего дня. Новые программы, оборудование элементная база. Все это улучшает работу с нашим космическим аппаратом

16. Дархан Марал, начальник центра управления полетом на рабочем месте. В 2011-м в Центр пришли молодые специалисты, выпускники российских и казахстанских вузов. Их уже научили работать, и как утверждают в руководстве РЦКС, с кадровым пополнением проблем нет. В 2008-м ситуация была намного печальнее. После потери первого спутника, значительная часть высокообразованных людей покинула центр.

17. Октябрь 2011-го был еще одним кульминационным моментом в работе над казахстанским спутником. Завершились его летно-конструкторские испытания, и начались так называемые зачетные испытания. Т.е. это был как бы экзамен для производителя на функциональность спутника. Происходило все следующим образом. На “КазСат-2” подняли телевизионный сигнал.

Затем несколько групп специалистов отправились в разные регионы Казахстана и замеряли параметры этого сигнала, т.е. насколько корректно сигнал ретранслирует спутник. Замечаний не возникло, и в конце концов специальная комиссия приняла акт о передаче спутника казахстанской стороне. С этого момента эксплуатацией аппарата занимаются казахстанские специалисты.

18. До конца ноября 2011-го в космическом центре “Акколь” работала большая группа российских специалистов. Они представляли субподрядные организации по проекту “КазСат-2”. Это ведущие компании российской космической отрасли: Центр им. Хруничева, который разработал и построил спутник, конструкторское бюро “Марс”(оно специализируется в области навигации орбитальных спутников), а также корпорация “Российские космические системы”, разрабатывающая программное обеспечение.

Вся система делится на две составляющие. Это, собственно, сам спутник и наземная инфраструктура управления. По технологии сначала подрядчик должен продемонстрировать работоспособность системы – это монтаж оборудования, его отладка, демонстрация функциональных возможностей. После всех процедур – обучение казахстанских специалистов.

19. Центр космической связи в Акколе – это одно из немногих мест в нашей стране, где сложилась благоприятная электромагнитная обстановка. На многие десятки километров вокруг здесь отсутствуют источники излучения. Они могут создать помехи и помешать управлению спутником. 10 больших параболических антенн направлены в небо в одну единственную точку. Там на большом расстоянии от поверхности Земли – это более 36-ти тысяч километров висит небольшой рукотворный объект – казахстанский спутник связи “КазСат-2”.

Большинство современных спутников связи геостационарные. Т.е. их орбита построена таким образом, что как бы зависает над одной географической точкой, и вращение Земли практически не оказывает на эту стабильную позицию никакого влияния. Это позволяет с помощью бортового ретранслятора прокачивать большие объемы информации, уверенно принимать эту информацию в зоне покрытия на Земле.

20. Еще одна любопытная деталь. По международным правилам допустимое отклонение спутника от точки стояния может составлять максимум пол-градуса. Для специалистов ЦУПа –удержать аппарат в заданных параметрах – ювелирная работа, требующая высочайшей квалификации специалистов-баллистиков. В центре будет работать 69 человек, из них 36 – это технические специалисты.

21. Вот это и есть главный пульт управления. На стене большой монитор, куда стекается вся телеметрия, на полукруглом столе несколько компьютеров, телефоны. Вроде бы все очень просто…

23. Виктор Лефтер, президент Республиканского центра космической связи:
— Мы будем расширять казахстанскую флотилию до 3-х, 4-х, а возможно даже – до 5-ти cпутников. Т.е. чтобы была постоянна замена аппаратов, резерв был, и чтобы наши операторы не испытывали такой острой необходимости использовать изделия других государств. Чтобы мы были обеспечены своими резервами.”

24. В настоящее время резервирование управления спутником осуществляется из Москвы, где расположен космический центр им. Хруничева. Однако, Республиканский центр космической связи намерен резервировать полет c казахстанской территории. Для этого сейчас строится второй ЦУП. Он будет расположен в 30-ти километрах севернее Алматы.

25. В планах Национального космического агентства Казахстана предстоящий в 2013-м году запуск третьего спутника “КазСат-3”. Контракт на его разработку и производство был подписан в 2011-м году во Франции, на аэрокосмическом салоне в ле Бурже. Спутник для Казахстана строит НПО им.академика Решетнева, которое расположено в российском городе Красноярске.

26. Интерфейс оператора отдела управления. Так он выглядит сейчас.

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?


Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?


Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?


Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников


На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники


До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?


После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников


Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.