AMD. История, мифы и легенды

1969 год всем запомнился разным. Состоялся первый полет Boeing-747. Советский Ту-144 впервые в истории пассажирской авиации преодолел звуковой барьер. С космодрома Байконур стартовала ракета-носитель «Протон-К», которая вывела на траекторию полёта к Луне АМС Луна-15. Появился ARPANET - первый прообраз Интернета. На харьковском заводе «Протон» выпущен первый советский кассетный магнитофон «Десна».

А 1 мая 1969 года в Чикаго была основана компания Advanced Micro Devices, которую мы сейчас лучше знаем по аббревиатуре AMD .

Основатель компании Уолтер Джереми Сандерс III сильно отличался от большинства выдающихся деятелей IT-индустрии. Нет никаких сомнений, что, например, Майкл Делл и Билл Гейтс всего добились собственным умом. Но когда этот ум стал давать первые плоды, нашлись родственники, инвестировавшие в них первую солидную сумму.

Джерри Сандерс вырос в бедной семье. Его отец был славен тем, что мастерски чинил светофоры и крепко выпивал. Настолько крепко, что об этом помнят и десятки лет спустя. Если бы не дед, Уолтер Джереми Сандерс Первый, будущий основатель AMD, вряд ли бы закончил школу и поступил в университет штата Иллинойс. Дед тоже миллионером не был, но, по крайней мере, не пил и не жалел времени на внука. Младший Сандерс к деду относился с уважением и учился как следует. Компания «Пульман», известная по всему миру своими великолепными вагонами, назначила ему стипендию.

Но главной тайной Уолтера Джереми Сандерса III было то, что он не собирался работать инженером-электронщиком. Диплом получить надо, куда ж без него. Но потом хорошо бы поехать в Калифорнию и стать киноактёром. Тем более, что и внешность у молодого человека была подходящая, и способности определённо имелись. Но Чикаго 50-х годов прошлого века был не самым спокойным городом. Он и сейчас, по статистике ФБР, остаётся наиболее опасным мегаполисом США, хотя общий уровень преступности снизился. А тогда… В общем, в один не лучший вечер в своей жизни Джерри Сандерс вступился за приятеля, у которого был конфликт с местной преступной группировкой Chi Seven. Приятель смог унести ноги, а Джерри нет. Результатом этого стали сломанные рёбра и челюсть, перебитый нос и безжалостно изрезанное ножом лицо. Девушки, говорят, любят мужчин со шрамами. А вот камера не очень. Поэтому о карьере киноактёра пришлось забыть. Оправившись от ран, Джереми сосредоточился на учёбе.

После окончания университета он работал в Douglas Aircraft, известном некогда производителем самолётов (сейчас остатки компании поглощены гигантом Boeing). Джерри Сандерс занимался разработкой… нет, не электронной начинки, а кондиционеров. Кстати, тоже довольно увлекательное занятие, но вот беда – за него очень скудно платили. Поэтому всего через год будущий основатель AMD устроился в отдел продаж компании Motorola, где проработал три года. А следующим работодателем Сандерса стала Fairchild Semiconductor. Вряд ли это название вам хорошо знакомо, хотя компания существует до сих пор. Но именно её в 1968 году покинули Роберт Нойс и Гордон Мур, чтобы основать будущую корпорацию Intel.

Тогда, в конце шестидесятых, из Fairchild Semiconductor вообще бежали инженерные кадры, потому что компания считала правильным, когда люди работают не за деньги, а за интерес. Люди, что характерно, так не считали. И вот, после очередного исхода, группа инженеров решила создать свою компанию. И даже название придумала – Advanced Micro Devices. Вот только, будучи людьми творческими, они плоховато разбирались в бизнесе. Да и не очень-то хотели в нём разбираться. Поэтому у инженеров возникла идея позвать главным того обаятельного парня Сандерса из отдела продаж. Джереми отказываться не стал. И 1 мая 1969 года была зарегистрирована компания AMD со стартовым капиталом в 100 000 долларов.

Друг или враг?

Мы не должны удивляться – откуда группа бывших инженеров и сотрудник отдела продаж взяли сотню тысяч долларов, гигантскую для того времени сумму. Стартовый капитал, он же уставной – там не надо вносить всю сумму разом. Достаточно внести некий регистрационный сбор и подписать обязательство найти сотню тысяч, если потребуется. А вот на дальнейшую работу денег не было категорически. Ведь на неё требовались даже не сотни тысяч, а миллионы.

Сандерс нанял юриста Тома Скорниа, и вместе с ним составил бизнес-план на много лет вперёд. Advanced Micro Devices должна была разрабатывать и производить микроэлектронику - полупроводниковые микросхемы для компьютеров и электронных устройств. Направление казалось просто фантастически перспективным, и для начала разработки требовалось полтора миллиона долларов. Сегодня такие суммы без проблем дают стартапам, обещающим сделать кошачий туалет с веб-камерой. Но в 1969-м году к планам AMD отнеслись скептически, и инвестиции долго никто не давал.

И когда уже почти всё казалось потерянным, Джереми Сандерс пошёл к своему бывшему коллеге, а теперь – потенциальному конкуренту Роберту Нойсу. Тому самому, основателю Intel. Роберт внимательно изучил бизнес-план и… подписал чек. И ещё сказал на прощание, что если вдруг всё же не сложится, Сандерсу всегда будут рады в Intel.

Таким образом, именно инвестиции Intel легли в основу бизнеса AMD. За последующие десятилетия в отношениях компаний были очень разные по эмоциональной окраске эпизоды. Но этот кусок истории никак не перепишешь.

До самой смерти в 1990 году Роберт Нойс в разумных пределах поддерживал AMD. В частности, способствовал лицензированию разработок Intel, без которых завоевать место под солнцем было бы существенно труднее. Почему Нойс это делал? Сентиментальность? Желание помочь бывшему коллеге? Понимание необходимости присутствия на рынке сильного, но дружественного по сути конкурента? Кто ж теперь знает. Но, возможно, если бы не скоропостижная смерть Нойса в июне 90-го, многое в отношениях компаний могло бы сложиться иначе.

Впрочем, не будем считать Роберта Нойса эдаким добрым дядюшкой. Процессоры с архитектурой x86 использовались в военных разработках, и Министерство обороны США не радовала перспектива остаться с одним-единственным поставщиком чипов. По мере того, как последних становилось всё меньше (вспомните, какой зоопарк наблюдался еще в начале девяностых), важность AMD, как альтернативного производителя, росла. По соглашению от 1982 года, у AMD были все лицензии на производство процессоров 8086, 80186 и 80286, однако, свежеразработанный процессор 80386 Intel передавать AMD отказалась категорически. И соглашение разорвала. Дальше последовал долгий и громкий судебный процесс – первый в истории компаний. Завершился он только в 1991 году победой AMD. За свою позицию Intel выплатила истцу миллиард долларов.

Но всё же отношения были подпорчены, и о былой доверительности речь не шла. Тем более, что в AMD пошли по пути reverse engineering. Компания продолжила выпускать отличающиеся аппаратно, но полностью совпадающие по микрокоду процессоры Am386, а затем и Am486. Тут уже в суд пошла Intel. Снова процесс затянулся надолго, и успех оказывался то на одной, то на другой стороне. Но 30 декабря 1994 года было принято судебное решение, согласно которому микрокод Intel всё же является собственностью Intel, и как-то нехорошо другим компаниям его использовать, если владельцу это не нравится. Поэтому с 1995-го всё изменилось всерьёз. На процессорах Intel Pentium и AMD K5 запускались любые приложения для платформы x86, но с точки зрения архитектуры они были принципиально разными. И, получается, что совсем уж настоящая конкуренция Intel и AMD началась лишь через четверть века после создания компаний.

Впрочем, для обеспечения совместимости перекрёстное опыление технологиями никуда не ушло. В современных процессорах Intel немало запатентованного AMD, и, наоборот, AMD аккуратно добавляет наборы инструкций, разработанные Intel.

Опередить время

Не секрет, что доля AMD на рынке процессоров всегда была несколько меньше, чем у Intel. И бюджет на разработки тоже несколько уступал Старшему Брату. В большинстве случаев это означает, что компания выступает в роли догоняющей, и заманивает потребителей по формуле «смотрите, вот у нас тоже появилось примерно то же самое, только гораздо дешевле».

Но история AMD – особенно после 1995 года – показывает, что даже относительно небольшие бюджеты можно использовать крайне эффективно.

В 2000-м году AMD первой в мире выпустила процессор с частотой 1 ГГц. Это был представитель набирающего популярность семейства Athlon.

В 2003-м AMD первой выпустила процессоры с архитектурой x86, поддерживающие 64-битные наборы инструкций. Они появились сразу в серверном семействе Opteron и пользовательском Athlon. Позднее эти наборы появились в продуктах Intel и VIA. И до сих пор некоторые операционные системы называют их AMD64, хотя в маркетинговых документах конкуренты предпочитают собственные бренды.

Не сбавляя обороты, в 2004-м AMD выпускает первые в мире двухъядерные x86-процессоры Athlon X2. На тот момент очень немногие приложения умели использовать два ядра одновременно, но в специализированном ПО прирост производительности был весьма внушительным.

В 2006-м году AMD представляет первый в мире 4-ядерный серверный процессор, где все 4 ядра выращены на одном кристалле, а не «склеены» из двух, как у коллег по бизнесу. Решены сложнейшие инженерные задачи – и на стадии разработки, и на производстве.

В том же 2006-м году компания AMD покупает ATI, одного из главных производителей графических чипов. С этого момента традиционные вычисления и графика стали неразрывно связанными в бизнесе AMD. В итоге это привело к созданию гибридных процессоров. Они появятся в 2011-м году, и впервые покажут, что интегрированная графика может справляться с большинством задач не хуже дискретной.

Графика AMD недавно поселилась во всех главных приставках – Xbox One, PlayStation 4 и Wii U. Вместе с процессорами, кстати. А там, где за вычисления отвечает Intel – например, в могучем Apple Mac Pro – картинку обеспечивает AMD. И помогает процессору в некоторых задачах.

Список технологических прорывов AMD очень внушителен, и с каждым годом перечень их становится всё длиннее. Другой вопрос, сами по себе инновации не всегда начинают продавать себя сами. Впереди обычно долгий путь от технологии в кремнии до её воплощения в софте. И когда изобретение доходит до нас, оно успевает стать индустриальным стандартом и появиться у других производителей. Но умаляет ли это достижения инженеров AMD? Не думаю.

Не только ПК. И уже давно

Рынок традиционных ПК (да и ноутбуков, к сожалению, тоже) трудно назвать перспективным и растущим. Хоронить старые добрые компьютеры пока очень опрометчиво, но вполне очевидно, что будущее персональных вычислений в каких-то других устройствах.

Мы уже упомянули современные приставки, где используются специальные версии гибридных процессоров AMD. Учитывая, что приставки разрабатываются с большим запасом, чтобы и лет через пять игры на них смотрелись современно, нетрудно оценить запас производительности.

На выставке Computex, проходившей в начале июня на Тайване (репортаж на Geektimes), решения AMD прокрались в NAS, где прежде властвовали производители процессоров с архитектурой ARM, а в топовом сегменте – Intel. Теперь новая линейка NAS компании Qnap работает на AMD. А ведь Qnap один из законодателей моды в этом классе устройств, которые по мере роста числа потребителей контента могут вскоре стать неотъемлемым элементом домашнего хозяйства. Наравне с телевизором, холодильником и микроволновкой.

AMD откровенно задержалась с разработкой решений для ультрамобильных устройств, вроде смартфонов и планшетов. SoC для последних в ассортименте есть довольно давно, но в готовых продуктах встречаются нечасто. В смартфонах AMD пока встретить не удавалось. И пока Intel, используя мощь своих инженерных и маркетинговых департаментов, продвигает в смартфоны процессоры с архитектурой x86, AMD готовит асимметричный ответ. Вместе с ARM, MediaTek, Qualcomm, Samsung и Texas Instruments образован альянс HSA Foundation . HSA означает Heterogeneous System Architecture, то есть неоднородная системная архитектура. Участники ставят довольно амбициозную цель – унифицировать правила программирования и разработать единые стандарты параллельных вычислений. Когда все задачи возлагаются на наиболее подходящие модули SoC, да ещё и позволяя последним помогать там, где эта помощь оказывается весомой. Разложить вычисления равномерно по традиционным ядрам, эффективно нагрузить графические, перепоручить звук специальным DSP (они есть в некоторых процессорах AMD) – всё это насколько очевидно с точки зрения необходимости, настолько и сложно технически. Но если такая задача будет решена в рамках индустрии, результат может заметно изменить пользовательский опыт на различных уровнях.

А ещё с 2012-го в AMD разрабатывают SoC с архитектурой ARM, и к 2020 году они должны занять существенную долю в бизнесе компании.

За сорок шесть лет Advanced Micro Devices не раз радикально менялась. Но суть остаётся прежней: малыми силами стремиться сделать невозможное.

И регулярно убеждаться, что невозможного, в общем-то, не существует.

Процессоры на персональные компьютеры получились свое распространение в семидесятых годах прошлого столетия. Они выпускались большим количеством производителей. Практически каждой компании в то время, как собственно говоря и сейчас, хотелось использовать для их производства только самые новые технологии. Однако не у всех компаний получилось получить свое развитие настолько же сильно, как у Intel и AMD. Одни производители полностью пропали с рынка, другие же перешли в другую сферу деятельности. Однако следует рассказать обо всем поэтапно.

Как началось создание процессора

Впервые мир услышал о процессорах в пятидесятых годах прошлого столетия. Они функционировали на механическом реле. Впоследствии стали появляться модели, которые работали при помощи электронных ламп и транзисторов. В те времена компьютерные устройства, на которые они устанавливались, были похожи на сложное и очень крупногабаритное оборудование. Их стоимость была очень высокой.

Все компоненты процессоров отвечали за процесс вычисления. Нужно было разобраться с тем, каким образом, их можно было соединить в единую микросхему. Данная задумка воплотилась в жизнь практически сразу после появления схем полупроводникового типа. В те времена разработчики процессоров даже предположить не могли, что данные схемы окажутся полезными в их деле. Именно по этой причине еще несколько лет они разрабатывали процессоры на нескольких микросхемах.

В конце шестидесятых годов компания Busicom начала разработку своего нового настольного калькулятора. Ей потребовалось 12 микросхем и она заказала их у компании Intel. В то время у разработчиков данной компании появились идеи соединения нескольких микросхем в одно целое. Данная идея пришлась по душе руководителю фирмы. Ее преимущество заключалось в том, что при этом была возможность значительно сэкономить. Ведь не нужно было производить сразу несколько микросхем. Кроме того благодаря расположению элементов процессора на одной микросхеме можно было создать устройство, которое подходило бы для использования на самых разных видах оборудования, применяемых для совершения вычислительных процессов.

В итоге проведенной специалистами корпорации работы появился первый в мире микропроцессор под названием Intel 4004. У него была способность совершать сразу шесть десятков тысяч операций всего за одну секунду. Он даже обрабатывал двоичные числа. Однако данный вид процессора не было возможности использовать для компьютеров, потому что для него еще не было создано таких устройств.

Самый первый персональный компьютер

Первым компьютер был создан студентом из Америки Джонатаном Титусом. В журнале «Электроника» он получил название Марк 2. В нем кроме всего прочего было дано описание данного устройства. Данное изобретение не помогло студенту заработать большие деньги. Изначально Титус планировал зарабатывать при помощи своего изобретения. Он планировал распространять за определенную стоимость печатные платы для создания собственных компьютеров. Потребителям приходилось остальные детали приобретать в магазинах. Конечно же у него не получилось заработать много, но он внес большой вклад в развитие компьютерной техники.

История развития процессоров Intel

Первым процессором компании Intel был 4004. Позже данный разработчик представил пользователям модель 8008. Она отличалась от предыдущей модели тем, что частота работы данного процессора составляла от 600 до 800 килогерц. В нем было более трех тысяч транзисторов. Его активно использовали на всевозможных вычислительных машинах.

В то же самое время в мире стали появляться первые персональные компьютерные устройства и компания Intel приняла решение осуществлять производство процессоров, подходящих для них. Спустя короткий срок времени компания разработала процессор 8080, который в десятки раз был более производительным, чем его предшественник.

Стоимость данной модели процессора была очень высокой по тем меркам. Однако производители полагали, что стоимость является совершенно оправданной для процессора, который обладает высоким уровнем производительности и способен отлично вписаться в любое компьютерное устройство. Он пользовался огромным спросом. Именно благодаря этому доходы компании только росли.

Спустя несколько лет на свет появился компьютер Altair – 8800. Его производителем стала компания MITS. Данная модель персонального компьютерного устройства осуществляла свою деятельность на процессоре от компании Intel модели 8800. Именно благодаря нему многочисленные компании стали осуществлять производство собственных микропроцессоров.

В то же самое время в СССР

В СССР стремительно развивалось производство различных видов вычислительных механизмов. Самый пик развития ЭВМ пришелся на семидесятые годы прошлого столетия. Они могли по своему уровню производительности вполне сравниться со своими зарубежными аналогами.

В 1970 году появился указ от отечественного руководства о том, что были разработаны стандарты совместимости программ и аппаратуры ЭВМ. В это время образовалась новая концепция вычислительной техники. В ее основу легли разработки IBM. Отечественные специалисты использовали технологию IBM 360.

Отечественные технологии, которые были разработаны в советские времена, потеряли свою актуальность. Вместо них стали использовать технологии импортного происхождения. Постепенно отечественная электронная отрасль стала значительно отставать от той, которая существовала на Западе. Все компьютерные устройства, которые были разработаны после восьмидесятых годов прошлого столетия осуществляли свою деятельность при помощи процессоров Zilog или Intel. Россия стала отставать по своим технологиям от Америки почти на десятилетний период.

Эволюция процессоров

В середине семидесятых годов прошлого столетия компания Motorola представила суд пользователе свой первый процессор, который получил название MC6800. Он обладал высоким уровнем производительности. У него была возможность работать с шестнадцати битными числами. Его стоимость составляла столько же, что у процессора Intel 8080. Его потребители не очень то стремились покупать. Именно по этой причине он так и не стал использоваться для персональных компьютеров. Компании пришлось расстаться с четырьмя тысячами сотрудников из-за финансовых трудностей.

В 1975 году бывшими сотрудниками Motorola была создана новая компания под названием MOS Technology. Они разработали процессор MOS Technology 6501. Он по своим характеристикам напоминал разработку Motorola, которая обвинила компанию в плагиате. Позже сотрудники MOS постарались кардинально переделать свое детище и выпустили чип 6502. Его стоимость была гораздо приемлемей, и он начал пользоваться огромным спросом. Его даже использовали для компьютерной техники Apple. Он имел принципиальное отличие от своего предшественника. У него уровень частоты работы был гораздо выше.

По пути уволенных сотрудников Motorola пошли и те, которые потеряли свое место в компании Intel. Они тоже создали компанию и запустили в производство свой процессор Zilog Z80. Он обладал не сильными отличиями от продукта Intel 8080. Он обладал единственной линией питания, и у него была приемлемая стоимость. Он мог функционировать с такими же программами. К тому же производительность данного устройства можно было сделать выше, и при этом не нужно было влияние оперативной памяти. Таким образом, Zilog начал пользоваться огромным спросом среди потребителей.

В России данная модель процессора применялась преимущественно в военной технике, в различных контроллерах и на многих других устройствах. Его даже использовали на разнообразных игровых приставках. В девяностых и восьмидесятых годах он пользовался огромной популярностью среди потребителей российского рынка.

Процессоры в фильме «Терминатор»

Фильм «Терминатор» полон моментов, когда робот сканирует все происходящее перед ним. Перед его глазами образуются странные для зрителей коды. Через несколько лет становится очевидным тот факт, что появлению таких кодов создатели фильма обязаны компании MOS с ее процессором версии 6502. Это заставляет повеселиться разработчиков, которым кажется забавным ситуация, при которой в фильме про далекое будущее используется процессор семидесятых годов.

Эволюция процессоров Intel, Zilog, Motorola

В конце семидесятых годов компания Intel представила свою очередную новинку. Она получила название Intel 8086. Благодаря этому чипу все ближайшие преследователи компании на рынке остались далеко позади. Он обладал высоким уровнем мощности, но это дало ему возможности стать популярным. В нем использовалась 16 разрядная шина, которая обладал высоким уровнем стоимости. Для этого процессора необходимо было использовать специальные микросхемы и переделывать материнскую плату.

Затем компания выпустила свой более успешный продукт Intel 8088. В нем имелось более тридцати тысяч транзисторов.

Компания Motorola в то же время выпустила свой продукт MC68000. Он был одним из самых мощных на то время. Для его использования необходимо было иметь специальные микросхемы. Однако он все равно пользовался большим спросом среди потребителей. Он предлагал пользователям огромные возможности для его использования.

В это же время компания Zilog тоже представила пользователям свою новую разработку. Она создала процессор Z8000. Данная новинка до сих пор вызывает большое количество споров. По своим техническим параметрам она была приемлемой и ее стоимость была низкой. Однако не многие пользователи хотели использовать ее на своих компьютерных устройствах.

Процессоры нового поколения от компании Intel

В начале 1993 года компания Intel представила свой процессор P5. Сегодня он известен под названием Pentium. Компании удалось усовершенствовать технологии, которые она раньше использовала для создания своих продуктов. Теперь их новинка обладала способностью справляться сразу с двумя задачами одновременно. Пропускная разрядность шины стала больше практически в два раза. Однако пользоваться данным процессором пользователи в полной мере не имели возможности, потому что для него необходимо было иметь специальную материнскую плату. Однако после выхода следующей модели процессора Pentium, ситуация стала совершенно другой.

Именно благодаря высоким технологиям чипы от производителя Intel стали пользоваться огромной популярностью у потребителей. Они занимали длительное время первые места в мире.

Недорогие разработки Intel

Для того чтобы в полной мере соперничать с компанией AMD в области доступных по цене процессоров разработчики Intel приняли решение не уменьшать стоимость своих товаров, а стали создавать не очень мощные процессоры, которые в скором времени стали называться Celeron. В 1998 году появилась первая такая маломощная модель процессора Celeron, работающая на ядре процессора Pentium второго поколения. Она не отличалась высоки уровнем производительности. Однако она вполне могла работать с технологическими новинками.

Процессоры серии Am29000 (Am29K)

Процессоры серии Am29000
Процессор Особенности
32-разрядный процессор с RISC -архитектурой
Am29005 Упрощённая версия процессора Am29000
Модернизированный Am29000 с интегрированным 2-канальным ассоциативным кэшем объёмом 8 КБ
Упрощённая версия процессора Am29030 (4 КБ кэша прямого отображения)
Модернизированный Am29030 с интегрированным математическим сопроцессором и увеличенным кэшем
Am29050 Модернизированный Am29040 (суперскалярный с внеочередным исполнением)
Am291хх Семейство микроконтроллеров
Am292хх Семейство встраиваемых процессоров

Процессоры архитектуры x86

Процессоры, выпущенные по лицензии компании Intel

Процессоры , , ,
Процессор Особенности
Аналог процессора Intel 8088 .
Am80C88 Аналог процессора Intel 80C88 (выпускался по технологии CMOS).
Am8086 Аналог процессора Intel 8086 .
Am80C86 Аналог процессора Intel 80C86 (выпускался по технологии CMOS).
Am80188 Аналог процессора Intel 80188 .
Am80L188 Am80188 для встраиваемых систем.
Аналог процессора Intel 80186 .
Am80L186 Am80186 для встраиваемых систем.
Am186EM Модернизированный Am80186 для встраиваемых систем.
Аналог процессора Intel 80286 .
Am80C286 Аналог процессора Intel 80C286 (выпускался по технологии CMOS).
Am80EC286 Am80C286 с пониженным энергопотреблением.
Am80L286 Am80286 для встраиваемых систем.
тактовой частотой 10МГц) тактовой частотой 12МГц)

Процессоры серии Am386

Процессоры серии Am386
Процессор Особенности
Базовый процессор семейства. Функциональный аналог процессора Intel 80386DX .
Am386DX с пониженным тепловыделением.
Am386DX с пониженным напряжением питания.
Am386SX Am386 с 16-разрядной внешней шиной данных .
Am386SXL Am386SX с пониженным тепловыделением.
Am386SXLV Am386SX с пониженным напряжением питания.
Am386DE Am386DX для встраиваемых систем.
Am386SE Am386SX для встраиваемых систем.
Am386EM Модернизированный для встраиваемых систем с интегрированным контроллером памяти.

Процессоры серии Am486

Процессоры серии К5
Процессор Ядро Особенности
5k86 SSA/5 Первый процессор серии К5. Первый процессор x86 компании AMD, имеющий внутреннюю архитектуру CISC -to-RISC .
Godot Модернизированный 5k86.
5k86 (SSA/5) K5

Процессоры серии

Представлены в 1997 году. Выпускались до 2001 года .

Процессоры серии К6
Процессор Ядро Особенности
K6 Первый процессор серии К6. До приобретения AMD компании NexGen разрабатывался как NexGen Nx686 .
Little Foot K6, произведённый по обновлённому техпроцессу.
K6-2 Chomper Модернизированное ядро Little Foot с блоком 3DNow!
CXT Chomper Extended - ядро Chomper с более высокой тактовой частотой.
K6-III Sharptooth Модернизированное ядро Little Foot с интегрированным кэшем второго уровня (256 КБ).
K6-III+ Мобильный вариант, произведённый по обновлённому техпроцессу, поддерживающий технологию PowerNow! и имеющий расширенный набор инструкций 3DNow!
K6-2+ K6-III+ с уменьшенным кэшем второго уровня (128КБ).
K6 K6-2

Процессоры серии

Представлены в 1999 году. Выпускались до 2005 года.

Процессоры серии К7
Процессор Ядро Особенности
Athlon Argon (К7) Первое ядро, использованное в процессорах Athlon. Имеет внешний инклюзивный кэш второго уровня (512 КБ).
Orion/Pluto (К75) Ядро Argon, выполненное по обновлённому техпроцессу.
Thunderbird Ядро К75 с интегрированным эксклюзивным кэшем второго уровня (256 КБ).
Athlon XP Palomino Модернизированное ядро Thunderbird с аппаратной предвыборкой данных и блоком SSE .
Thoroughbred Ядро Palomino, выполненное по обновлённому техпроцессу.
Barton Модернизированное ядро Thoroughbred с увеличенным до 512 КБ кэшем второго уровня.
Thorton Ядро Barton с частично отключённым кэшем второго уровня (256 КБ).
Athlon MP Palomino Процессор Athlon XP с возможностью работы в многопроцессорной конфигурации.
Thoroughbred
Thorton
Athlon 4 Corvette Мобильный вариант ядра Palomino с поддержкой энергосберегающей технологии PowerNow!
Mobile Athlon XP Thoroughbred Мобильный вариант ядра Thoroughbred с поддержкой энергосберегающей технологии PowerNow!
Duron Spitfire Ядро Thunderbird с меньшим кэшем второго уровня (64 КБ).
Morgan Ядро Palomino с меньшим кэшем второго уровня (64 КБ).
Applebred Ядро Thoroughbred с частично отключённым кэшем второго уровня (64 КБ).
Mobile Duron Camaro Мобильный вариант ядра Spitfire с поддержкой энергосберегающей технологии PowerNow!
Morgan Мобильный вариант ядра Morgan с поддержкой энергосберегающей технологии PowerNow!
Sempron Thoroughbred Переименованный Athlon XP, предназначенный для рынка недорогих компьютеров.
Thorton
Barton
Geode NX Thoroughbred Процессор для встраиваемых систем.
Athlon XP

Процессоры Geode

Процессоры серии

Представлены в 2003 году . Все процессоры серии К8 имеют интегрированный контроллер памяти (одноканальный DDR - Socket 754 , двухканальный DDR - Socket 939 / Socket 940 или двухканальный DDR2 - Socket AM2 / Socket F) и поддерживают набор инструкций AMD64 (если не указано обратное).

Процессоры серии К8
Процессор Ядро Особенности
Opteron Sledgehammer Первая модель процессоров Opteron (130 нм).
Venus Одноядерные процессоры Opteron 1хх (90 нм).
Troy Одноядерные процессоры Opteron 2хх (90 нм).
Athens Одноядерные процессоры Opteron 8хх (90 нм).
Denmark Двухъядерные процессоры Opteron 1хх (90 нм).
Italy Двухъядерные процессоры Opteron 2хх (90 нм).
Egypt Двухъядерные процессоры Opteron 8хх (90 нм).
Santa Ana Socket AM2).
Santa Rosa Двухъядерные процессоры Opteron (90 нм, Socket F).
Clawhammer Первая модель процессоров Athlon 64 (130 нм, 1 МБ кэша второго уровня).
Newcastle Ядро Clawhammer с частично отключённым кэшем второго уровня (512 КБ).
Winchester Процессоры Athlon 64, произведённые по обновлённому (90 нм) техпроцессу.
Venice Ревизия ядра Winchester
San Diego Ревизия ядра Venice
Orleans Процессоры Athlon 64 для Socket AM2
Lima Одноядерные процессоры на базе ядра Brisbane
Sledgehammer Первая модель процессоров Athlon 64 FX (130 нм)
San Diego Процессоры Athlon 64 FX, произведённые по обновлённому техпроцессу (90 нм)
Toledo Двухъядерные процессоры Athlon FX (90 нм)
Manchester Двухъядерные процессоры на базе ядра Venice (512 КБ кэша второго уровня, Socket 939)
Toledo Двухъядерные процессоры на базе ядра Venice (1 МБ кэша второго уровня, Socket 939)
Windsor Двухъядерные процессоры на базе ядра Orleans (1 МБ кэша второго уровня, Socket AM2)
Brisbane Двухъядерные процессоры, произведённые по обновлённому (65 нм) техпроцессу
Athlon X2 Переименованные процессоры Athlon 64 X2 с новой системой обозначения моделей.
Sempron Paris Первая модель процессоров Sempron K8. Ядро Newcastle с частично отключённым кэшем второго уровня (256 КБ). Инструкции AMD64 заблокированы.
Palermo Ядро Winchester с частично отключённым кэшем второго уровня (128 или 256 КБ).
Manila Ядро Orleans с частично отключённым кэшем второго уровня (256 КБ).
Sparta Ядро Lima с частично отключённым кэшем второго уровня (512 КБ).
Athlon XP-M Dublin Мобильные процессоры. Инструкции AMD64 заблокированы.
Mobile Athlon 64 Newcastle Мобильный вариант ядра Newcastle.
Odessa Процессоры Mobile Athlon 64, произведённые по обновлённому техпроцессу (90 нм).
Oakville Процессоры Mobile Athlon 64 LV (их наследнимками стали Turion 64), произведённые по обновлённому техпроцессу (90 нм) с пониженным энергопотреблением.
Newark Процессоры Mobile Athlon 64, пришли на смену Odessa с Socket 754 и поддержкой SSE3.
Trinidad Двухъядерные процессоры Mobile Athlon 64 X2 (90 нм техпроцесс, арх. K8 rev.F, 512 КБ кэша второго уровня).
Turion 64 Lancaster Первая модель процессоров Turion 64 (90 нм).
Sherman Процессоры Turion 64, произведённые по обновлённому техпроцессу (65 нм).
Turion 64 X2 Taylor Двухъядерные процессоры Turion 64 X2 (90 нм техпроцесс, 256 КБ кэша второго уровня). Socket S1.
Tyler Процессоры Turion 64 X2, произведённые по обновлённому техпроцессу (65 нм). Socket S1.
Mobile Sempron Georgetown Первая модель процессоров Mobile Sempron (90 нм техпроцесс, Socket 754).
Albany Пришел на смену Georgetown, отличается поддержкой SSE3
Richmond Пришел на смену Albany, отличается двухканальным контроллером памяти DDR2 и разъемом Socket AM2 (арх. K8 rev.F)
Opteron Turion

Продолжая тему первой статьи - история эволюции процессоров с конца XX века по начала XXI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) - архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

Руководители проекта Berkeley RISC - Дэвид Паттерсон и Карло Секвин

После нескольких лет плодотворной работы, на рынке появилось несколько образцов процессоров с сокращенным набором команд. Каждая инструкция платформы RISC была простой и выполнялась за один такт. Также присутствовало намного больше регистров общего назначения. Кроме того использовалась конвейеризация с упрощенными командами, что позволяло эффективно наращивать тактовую частоту.

RISC I вышел в 1982 году и содержал более чем 44 420 транзисторов. Он имел всего 32 инструкции и работал на частоте 4 МГц. Следующий за ним RISC II насчитывал 40 760 транзисторов, использовал 39 инструкций и был более быстрым.

Процессор RISC II

Процессоры MIPS: R2000, R3000, R4000 и R4400

Архитектура процессоров MIPS (Microprocessor without Interlocked Pipeline Stages) предусматривала наличие вспомогательных блоков в составе кристалла. В MIPS использовался удлиненный конвейер.

В 1984 году группа исследователей во главе с американским ученым Джоном Хеннесси основала компанию, проектирующую микроэлектронные устройства. MIPS лицензировала микропроцессорную архитектуру и IP-ядра для устройств умного дома, сетевых и мобильных применений. В 1985 году вышел первый продукт компании - 32-битный R2000, который в 1988 году был доработан в R3000. У обновленной модели имелась поддержка многопроцессорности, кэш-памяти инструкций и данных. Процессор нашел применение в SG-сериях рабочих станций разных компаний. Также R3000 стал основой игровой консоли Sony PlayStation.

Процессор R3000

В 1991 году вышла линейка нового поколения R4000. Данный процессор обладал 64-битной архитектурой, встроенным сопроцессором и работал на тактовой частоте 100 МГц. Внутренняя кэш-память составляла 16 Кб (8 Кб кэш-команд и 8 Кб кэш-данных).

Через год вышла доработанная версия процессора - R4400. В этой модели увеличился кэш до 32 Кб (16 Кб кэш-команд и 16 Кб кэш-данных). Процессор мог работать на частоте 100 МГц - 250 МГц.

Процессоры MIPS: R8000 и R10000

В 1994 году появился первый процессор с суперскалярной реализацией архитектуры MIPS - R8000. Емкость кэш-памяти данных составляла 16 Кб. У этого CPU была высокая пропускная способность доступа к данным (до 1.2 Гб/с) в сочетании с высокой скоростью выполнения операций. Частота достигала 75 МГц - 90 МГц. Использовалось 6 схем: устройство для целочисленных команд, для команд с плавающей запятой, три вторичных дескриптора кэш-памяти ОЗУ и кэш-контроллер ASIC.

Процессор R8000

В 1996 году вышла доработанная версия - R10000. Процессор включал в себя 32 Кб первичной кэш-памяти данных и команд. Работал CPU на частоте 150 МГц - 250 МГц.

В конце 90-х компания MIPS занялась продажей лицензий на 32-битную и 64-битную архитектуры MIPS32 и MIPS64.

Процессоры SPARC

Ряды процессоров пополнили продукты компании Sun Microsystems, которая разработала масштабируемую архитектуру SPARC (Scalable Processor ARChitecture). Первый одноименный процессор вышел в конце 80-х и получил название SPARC V7. Его частота достигала 14.28 МГц - 40 МГц.

В 1992 году появилась следующая 32-битная версия под названием SPARC V8, на базе которой был создан процессор microSPARC. Тактовая частота составляла 40 МГц - 50 МГц.

Над созданием следующего поколения архитектуры SPARC V9 с компанией Sun Microsystems совместно работали Texas Instruments, Fujitsu, Philips и другие. Платформа расширилась до 64 бит и являлась суперскалярной с 9-стадийным конвейером. SPARC V9 предусматривала использование кэш-памяти первого уровня, разделенного на инструкции и данные (каждая объемом по 16 Кб), а также второго уровня емкостью 512 Кб - 1024 Кб.

Процессор UltraSPARC III

Процессоры StrongARM

В 1995 году стартовал проект по разработке семейства микропроцессоров StrongARM, реализовавших набор инструкций ARM V4. Эти CPU представляли собой классическую скалярную архитектуру с 5-стадийным конвейером, включая блоки управления памятью и поддерживая кэш-память инструкций и данных объемом по 16 Кб каждая.

StrongARM SA-110

И уже в 1996 году был выпущен первый процессор на базе StrongARM - SA-110. Он работал на тактовых частотах 100 МГц, 160 МГц или 200 МГц.

Также на рынок вышли модели SA-1100, SA-1110 и SA-1500.

Процессор SA-110 в Apple MessagePad 2000

Процессоры POWER, POWER2 и PowerPC

В 1985 году компания IBM начала разработку RISC-архитектуры следующего поколения в рамках проекта America Project. Разработка процессора POWER (Performance Optimization With Enhanced RISC) и набора инструкций для него длилась 5 лет. Он был весьма производительный, но состоял из 11 различных микросхем. И поэтому в 1992 году вышел другой вариант процессора, что умещался в одном чипе.

Чипсет POWER

В 1991 году совместными усилиями альянса компаний IBM, Apple и Motorola была разработана архитектура PowerPC (сокращенно PPC). Она состояла из базового набора функций платформы POWER, а также поддерживала работу в двух режимах и была обратно совместима с 32-битным режимом работы для 64-разрядной версии. Основным назначением являлись персональные компьютеры.

Процессор PowerPC 601 использовался в Macintosh.

Процессор PowerPC

В 1993 году был представлен POWER2 с расширенным набором команд. Тактовая частота процессора варьировалась от 55 МГц до 71.5 МГц, а кэш-память данных и инструкций была 128-256 Кб и 32 Кб. Микросхемы процессора (их было 8) содержали 23 миллиона транзисторов, а изготавливался он по 0.72-микрометровой CMOS-технологии.

В 1998 году IBM выпустила третью серию процессоров POWER3 на 64 бита, полностью совместимых со стандартом PowerPC.

В период с 2001 по 2010 вышли модели POWER4 (до восьми параллельно выполняющихся команд), двухядерные POWER5 и POWER6, четырех-восьми ядерный POWER7.

Процессоры Alpha 21064A

В 1992 году компания Digital Equipment Corporation (DEC) выпустила процессор Alpha 21064 (EV4). Это был 64-разрядный суперскалярный кристалл с конвейерной архитектурой и тактовой частотой 100 МГц - 200 МГц. Изготовлен по 0,75-мкм техпроцессу, со внешней 128-разрядной шиной процессора. Присутствовало 16 Кб кэш-памяти (8 Кб данных и 8 Кб инструкций).

Следующей моделью в серии стал процессор 21164 (EV5), который вышел в 1995 году. Он обладал двумя целочисленными блоками и насчитывал уже три уровня кэш-памяти (два в процессоре, третий - внешний). Кэш-память первого уровня разделялась на кэш данных и кэш инструкций объемом по 8 Кб каждый. Объем кэш-памяти второго уровня составлял 96 Кб. Тактовая частота процессора варьировалась от 266 МГц до 500 МГц.

DEC Alpha AXP 21064

В 1996 году вышли процессоры Alpha 21264 (EV6) с 15,2 миллионами транзисторов, изготовленные по 15,2-мкм техпроцессу. Их тактовая частота составляла от 450 МГц до 600 МГц. Целочисленные блоки и блоки загрузки/сохранения были объединены в единый модуль Ebox, а блоки вычислений с плавающей запятой - в модуль Fbox. Кэш первого уровня сохранил разделение на память для инструкций и для данных. Объем каждой части составлял 64 Кб. Объем кэш-памяти второго уровня был от 2 Мб до 8 Мб.

В 1999 году DEC купила компания Compaq. В результате чего большая часть производства продукции, использовавшей Alpha, была передана компании API NetWorks, Inc.

Процессоры Intel P5 и P54C

По макету Винода Дхама был разработан процессор пятого поколения под кодовым названием P5. В 1993 году CPU вышли в производство под названием Pentium.

Процессоры на ядре P5 производились с использованием 800-нанометрового техпроцесса по биполярной BiCMOS-технологии. Они содержали 3,1 миллиона транзисторов. У Pentium была 64-битная шина данных, суперскалярная архитектура. Имелось раздельное кэширование программного кода и данных. Использовалась кэш-память первого уровня объемом 16 Кб, разделенная на 2 сегмента (8 Кб для данных и 8 Кб для инструкций). Первые модели были с частотами 60 МГц - 66 МГц.

Процессор Intel Pentium

В том же году Intel запустила в продажу процессоры P54C. Производство новых процессоров было переведено на 0,6-мкм техпроцесс. Скорость работы процессоров составляла 75 МГц, а с 1994 года - 90 МГц и 100 МГц. Через год архитектура P54C (P54CS) была переведена на 350-нм техпроцесс и тактовая частота увеличилась до 200 МГц.

В 1997 году P5 получила последнее обновление - P55C (Pentium MMX). Появилась поддержка набора команд MMX (MultiMedia eXtension). Процессор состоял из 4,5 миллиона транзисторов и производится по усовершенствованной 280-нанометровой CMOS-технологии. Объем кэш-памяти первого уровня увеличился до 32 Кб (16 Кб для данных и 16 Кб для инструкций). Частота процессора достигла 233 МГц.

Процессоры AMD K5 и K6

В 1995 году компания AMD выпустила процессор K5. Архитектура представляла собой RISC-ядро, но работала со сложными CISC-инструкциями. Процессоры изготавливались с использованием 350- или 500-нанометрового техпроцесса, с 4,3 миллионами транзисторов. Все K5 имели пять целочисленных блоков и один блок вычислений с плавающей запятой. Объем кэш-памяти инструкций составлял 16 Кб, а данных - 8 Кб. Тактовая частота процессоров варьировалась от 75 МГц до 133 МГц.

Процессор AMD K5

Под маркой K5 выпускалось два варианта процессоров SSA/5 и 5k86. Первый работал на частотах от 75 МГц до 100 МГц. Процессор 5k86 работал на частотах от 90 МГц до 133 МГц.

В 1997 году компания представила процессор K6, архитектура которого существенно отличалась от K5. Процессоры изготавливались по 350-нанометровому техпроцессу, включали в себя 8,8 миллионов транзисторов, поддерживали изменение порядка выполнения инструкций, набор команд MMX и блок вычислений с плавающей запятой. Площадь кристалла составляла 162 мм². Объем кэш-памяти первого уровня насчитывал 64 Кб (32 Кб данные и 32 Кб инструкции). Работал процессор на частоте 166 МГц, 200 МГц и 233 МГц. Частота системной шины была 66 МГц.

В 1998 году AMD выпустила чипы с улучшенной архитектурой K6-2, с 9,3 миллионами транзисторов изготавливаемого по 250-нанометровому техпроцессу. Максимальная частота чипа составляла 550 МГц.

Процессор AMD K6

В 1999 году вышла третья генерация - архитектура K6-III. Кристалл сохранил все особенности K6-2, но при этом появилась встроенная кэш-память второго уровня объемом 256 Кб. Объем кэша первого уровня составлял 64 Кб.

Процессоры AMD K7

В том же 1999 году на смену К6 пришли процессоры К7. Они выпускались по 250-нм технологии с 22 миллионами транзисторов. У CPU присутствовал новый блок целочисленных вычислений (ALU). Системная шина EV6 обеспечивала передачу данных по обоим фронтам тактового сигнала, что давало возможность при физической частоте 100 МГц получить эффективную частоту 200 МГц. Объем кэш-памяти первого уровня составлял 128 Кб (64 Кб инструкций и 64 Кб данных). Кэш второго уровня достигал 512 Кб.

Процессор AMD K7

Несколько позже появились кристаллы, базировавшиеся на ядре Orion. Они производилось по 180-нм техпроцессу.

Выход ядра Thunderbird внес необычные изменения в процессоры. Кэш-память 2-го уровня была перенесена непосредственно в процессорное ядро и работала на одинаковой с ним частоте. Кэш был с эффективным объемом 384 Кб (128 Кб кэша первого уровня и 256 Кб кэша второго уровня). Увеличилась тактовая частота системной шины - теперь она функционировала с частотой 133 МГц.

Процессоры Intel P6

Архитектура P6 пришла на смену P5 в 1995 году. Процессор являлся суперскалярным и поддерживал изменения порядка выполнения операций. Процессоры использовали двойную независимую шину, которая значительно увеличила пропускную способность памяти.

В том же 1995 году были представлены процессоры следующего поколения Pentium Pro. Кристаллы работали на частоте 150 МГц - 200 МГц, имели 16 Кб кэш-памяти первого уровня и до 1 Мб кэша второго уровня.

Процессор Intel Pentium Pro

В 1999 году были представлены первые процессоры Pentium III. Они базировались на новой генерации ядра P6 под названием Katmai, которые являлись модифицированными версиями Deschutes. В ядро была добавлена поддержка инструкций SSE, а также улучшился механизм работы с памятью. Тактовая частота процессоров Katmai достигала 600 МГц.

В 2000 году вышли первые процессоры Pentium 4 с ядром Willamette. Эффективная частота системной шины составляла 400 МГц (физическая частота - 100 МГц). Кэш-данных первого уровня достигал объема 8 Кб, а кэш-память второго уровня - 256 Кб.

Следующим ядром линейки стало Northwood (2002 год). Процессоры содержали 55 миллионов транзисторов и производились по новой 130-нм КМОП-технологии с медными соединениями. Частота системной шины составляла 400 МГц, 533 МГц или 800 МГц.

Intel Pentium 4

В 2004 году производство процессоров вновь перевели на более тонкие технологические нормы - 90 нм. Вышли Pentium 4 на ядре Prescott. Кэш данных первого уровня увеличился до 16 Кб, а кэш второго уровня достиг 1 Мб. Тактовая частота составляла 2,4 ГГц - 3,8 ГГц, частота системной шины - 533 МГц или 800 МГц.

Последним ядром, которое использовалось в процессорах Pentium 4 стало одноядерное Cedar Mill. Выпускалось по новому техпроцессу - 65 нм. Существовало четыре модели: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц).

Процессоры Athlon 64 и Athlon 64 X2

В конце 2003 года AMD выпустила новую 64-битную архитектуру K8, построенную по 130-нанометровому техпроцессу. В процессоре был встроенный контроллер памяти и шина HyperTransport. Она работала на частоте 200 МГц. Новые продукты AMD получили название Athlon 64. Процессоры поддерживали множество наборов команд, таких как MMX, 3DNow!, SSE, SSE2 и SSE3.

Процессор Athlon 64

В 2005 году на рынок вышли процессоры компании AMD под названием Athlon 64 X2. Это были первые двухъядерные процессоры для настольных компьютеров. В основе модели лежали два ядра, выполненных на одном кристалле. Они имели общий контроллер памяти, шину HyperTransport и очередь команд.

Процессор Athlon 64 X2

В течение 2005 и 2006 годов AMD выпустила четыре поколения двухъядерных чипов: три 90-нм ядра Manchester, Toledo и Windsor, а также 65-нм ядро Brisbane. Процессоры отличались объемом кэш-памяти второго уровня и энергопотреблением.

Процессоры Intel Core

Процессоры Pentium M обеспечивали большую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. И поэтому их архитектурные решения стали основой для микроархитектуры Core, которая вышла в 2006 году. Первым настольным четырехядерным процессором стал Intel Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 Мб кэш-памяти второго уровня.

Кодовое имя первого поколения мобильных процессоров компании Intel было Yonah. Они производились с использованием техпроцесса 65 нм, основанного на архитектуре Banias/Dothan Pentium M, с добавленной технологией защиты LaGrande. Процессор мог обрабатывать до четырех инструкций за такт. В Core был переработан алгоритм обработки 128-битных инструкций SSE, SSE2 и SSE3. Если раньше каждая команда обрабатывалась за два такта, то теперь для операции требовался лишь один такт.

Intel Core 2 Extreme QX6700

В 2007 году вышла 45-нм микроархитектура Penryn с использованием металлических затворов Hi-k без содержания свинца. Технология использовалась в семействе процессоров Intel Core 2 Duo. В архитектуру добавилась поддержка инструкций SSE4, а максимальный объем кэш-памяти 2-го уровня у двухъядерных процессоров увеличился с 4 Мб до 6 Мб.

Процессор AMD Phenom II X6

В 2008 году вышла архитектура следующего поколения - Nehalem. Процессоры обзавелись встроенным контроллером памяти, поддерживающим 2 или 3 канала DDR3 SDRAM или 4 канала FB-DIMM. На смену шине FSB, пришла новая шина QPI. Объем кэш-памяти 2-го уровня уменьшился до 256 Кб на каждое ядро.

Intel Core i7

Вскоре Intel перевела архитектуру Nehalem на новый 32-нм техпроцесс. Эта линейка процессоров получила название Westmere.
Первой моделью новой микроархитектуры стал Clarkdale, обладающий двумя ядрами и интегрированным графическим ядром, производимым по 45-нм техпроцессу.

Процессоры AMD K10

Компания AMD старалась не отставать от Intel. В 2007 году она выпустила поколение архитектуры микропроцессоров x86 - K10. Четыре ядра процессора были объединены на одном кристалле. В дополнение к кэшу 1-го и 2-го уровней модели K10 наконец получили L3 объемом 2 Мб. Объем кэша данных и инструкций 1-го уровня составлял 64 Кб каждый, а кэш-памяти 2-го уровня - 512 Кб. Также появилась перспективная поддержка контроллером памяти DDR3. В K10 использовалось два 64-битных контроллера. Каждое процессорное ядро имело 128-битный модуль вычислений с плавающей запятой. Вдобавок ко всему, новые процессоры работали через интерфейс HyperTransport 3.0.

В 2007 году с архитектурой K10 вышли многоядерные центральные процессоры Phenom фирмы AMD, предназначенные для использования в стационарных персональных компьютерах. Решения на базе K10 производились по 65- и 45-нм техпроцессу. В новой версии архитектуры (К10,5) контроллер памяти работал с памятью DDR2 и DDR3.

Процессор AMD Phenom

В 2011 году вышла новая архитектура Bulldozer. Каждый модуль содержал два ядра со своим блоком целочисленных вычислений и кэш-памятью 1-го уровня. Поддерживалась кэш-память 3-го уровня объемом 8 Мб, шины HyperTransport 3.1, технологии увеличения частоты ядер Turbo Core второго поколения и наборов инструкций AVX, SSE 4.1, SSE 4.2, AES. Также процессоры Bulldozer были наделены двухканальным контроллером памяти DDR3 с эффективной частотой 1866 МГц.

Процессор AMD Bulldozer

В 2013 году компания представила следующее поколение процессоров - Piledriver. Данная модель являлась улучшенной архитектурой Bulldozer. Были доработаны блоки предсказания ветвлений, возросла производительность модуля операций с плавающей запятой и целочисленных вычислений, а также тактовая частота.

Просматривая историю, можно проследить этапы развития процессоров, изменения в их архитектуре, усовершенствования технологий разработки и многое другое. Современные CPU отличаются от тех, которые выходили раньше, но при этом имеют и общие черты.

Многие при покупке flash-накопителя задаются вопросом: «как правильно выбрать флешку». Конечно, флешку выбрать не так уж и трудно, если точно знать для каких целей она приобретается. В этой статье я постараюсь дать полный ответ на поставленный вопрос. Я решил писать только о том, на что надо смотреть при покупке.

Flash-накопитель (USB-накопитель) – это накопитель, предназначенный для хранения и переноса информации. Работает флешка очень просто без батареек. Всего лишь нужно ее подключить к USB порту Вашего ПК.

1. Интерфейс флешки

На данный момент существует 2 интерфейса это: USB 2.0 и USB 3.0. Если Вы решили купить флешку, то я рекомендую брать флешку с интерфейсом USB 3.0. Данный интерфейс был сделан недавно, его главной особенностью является высокая скорость передачи данных. О скоростях поговорим чуть ниже.


Это один из главных параметров, на который нужно смотреть в первую очередь. Сейчас продаются флешки от 1 Гб до 256 Гб. Стоимость флеш-накопителя напрямую будет зависеть от объема памяти. Тут нужно сразу определиться для каких целей покупается флешка. Если вы собираетесь на ней хранить текстовые документы, то вполне хватит и 1 Гб. Для скачивания и переноски фильмов, музыки, фото и т.д. нужно брать чем больше, тем лучше. На сегодняшний день самыми ходовыми являются флешки объемом от 8Гб до 16 Гб.

3. Материал корпуса



Корпус может быть сделан из пластика, стекла, дерева, метала и т.д. В основном флешки делают из пластика. Тут я советовать нечего не могу, все зависит от предпочтений покупателя.

4. Скорость передачи данных

Ранее я писал, что существует два стандарта USB 2.0 и USB 3.0. Сейчас объясню, чем они отличаются. Стандарт USB 2.0 имеет скорость чтения до 18 Мбит/с, а записи до 10 Мбит/с. Стандарт USB 3.0 имеет скорость чтения 20-70 Мбит/с, а записи 15-70 Мбит/с. Тут, я думаю, объяснять ничего не надо.





Сейчас в магазинах можно найти флешки разных форм и размеров. Они могут быть в виде украшений, причудливых животных и т.д. Тут я бы посоветовал брать флешки, у которых есть защитный колпачок.

6. Защита паролем

Есть флешки, которые имеют функцию защиты паролем. Такая защита осуществляется при помощи программы, которая находится в самой флешке. Пароль можно ставить как на всю флешку, так и на часть данных в ней. Такая флешка в первую очередь будет полезна людям, которые переносят в ней корпоративную информацию. Как утверждают производители, потеряв ее можно не беспокоиться о своих данных. Не все так просто. Если такая флешка попадет в руки понимающего человека, то ее взлом это всего лишь дело времени.



Такие флешки внешне очень красивы, но я бы не рекомендовал их покупать. Потому что они очень хрупкие и часто ломаются пополам. Но если Вы аккуратный человек, то смело берите.

Вывод

Нюансов, как Вы заметили, много. И это только вершина айсберга. На мой взгляд, самые главные параметры при выборе: стандарт флешки, объем и скорость записи и чтения. А все остальное: дизайн, материал, опции – это всего лишь личный выбор каждого.

Добрый день, мои дорогие друзья. В сегодняшней статье я хочу поговорить о том, как правильно выбрать коврик для мыши. При покупке коврика многие не придают этому никакого значения. Но как оказалось, этому моменту нужно уделять особое внимание, т.к. коврик определяют один из показателей комфорта во время работы за ПК. Для заядлого геймера выбор коврика это вообще отдельная история. Рассмотрим, какие варианты ковриков для мыши придуманы на сегодняшний день.

Варианты ковриков

1. Алюминиевые
2. Стеклянные
3. Пластиковые
4. Прорезиненные
5. Двухсторонние
6. Гелиевые

А теперь я бы хотел поговорить о каждом виде поподробнее.

1. Сначала хочу рассмотреть сразу три варианта: пластиковые, алюминиевые и стеклянные. Такие коврики пользуются большой популярностью у геймеров. Например, пластиковые коврики легче найти в продаже. По таким коврикам мышь скользит быстро и точно. И самое главное такие коврики подходят как для лазерных, так и для оптических мышей. Алюминиевые и стеклянные коврики найти будет немного сложнее. Да и стоить они будут немало. Правда есть за что – служить они будут очень долго. Коврики данных видов имеют маленькие недостатки. Многие говорят, что при работе они шуршат и наощупь немного прохладные, что может вызывать у некоторых пользователей дискомфорт.


2. Прорезиненные (тряпичные) коврики имеют мягкое скольжение, но при этом точность движений у них хуже. Для обычных пользователей такой коврик будет в самый раз. Да и стоят они намного дешевле предыдущих.


3. Двухсторонние коврики, на мой взгляд, очень интересная разновидность ковриков для мыши. Как понятно из названия у таких ковриков две стороны. Как правило, одна сторона является скоростной, а другая высокоточной. Бывает так, что каждая сторона рассчитана на определенную игру.


4. Гелиевые коврики имеют силиконовую подушку. Она якобы поддерживает руку и снимает с нее напряжение. Лично для меня они оказались самыми неудобными. По назначению они рассчитаны для офисных работников, поскольку те целыми днями сидят за компьютером. Для обычных пользователей и геймеров такие коврики не подойдут. По поверхности таких ковриков мышь скользит очень плохо, да и точность у них не самая хорошая.

Размеры ковриков

Существует три вида ковриков: большие, средние и маленькие. Тут все в первую очередь зависит от вкуса пользователя. Но как принято считать большие коврики хорошо подходят для игр. Маленькие и средние берут в основном для работы.

Дизайн ковриков

В этом плане, нет ни каких ограничений. Все зависит от того что Вы хотите видеть на своем коврике. Благо сейчас на ковриках что только не рисуют. Наиболее популярными являются логотипы компьютерных игр, таких как дота, варкрафт, линейка и т.д. Но если случилось, что Вы не смогли найти коврик с нужным Вам рисунком, не стоит огорчаться. Сейчас можно заказать печать на коврик. Но у таких ковриков есть минус: при нанесении печати на поверхность коврика его свойства ухудшаются. Дизайн в обмен на качество.

На этом я хочу закончить статью. От себя желаю сделать Вам правильный выбор и быть им довольным.
У кого нет мышки или хочет её заменить на другую советую посмотреть статью: .

Моноблоки компании Microsoft пополнились новой моделью моноблока под названием Surface Studio. Свою новинку Microsoft представил совсем недавно на выставке в Нью-Йорке.


На заметку! Я пару недель назад писал статью, где рассматривал моноблок Surface. Этот моноблок был представлен ранее. Для просмотра статьи кликайте по .

Дизайн

Компания Microsoft свою новинку называет самым тонким в мире моноблоком. При весе в 9,56 кг толщина дисплея составляет всего лишь 12,5 мм, остальные габариты 637,35х438,9 мм. Размеры дисплея составляют 28 дюймов с разрешением больше чем 4К (4500х3000 пикселей), соотношение сторон 3:2.


На заметку! Разрешение дисплея 4500х3000 пикселей соответствует 13,5 млн пикселей. Это на 63% больше, чем у разрешения 4К.

Сам дисплей моноблока сенсорный, заключенный в алюминиевый корпус. На таком дисплее очень удобно рисовать стилусом, что в итоге открывает новые возможности использования моноблоком. По моему мнению эта модель моноблока будет по нраву творческим людям (фотографы, дизайнеры и т. д.).


На заметку! Для людей творческих профессий я советую посмотреть статью, где я рассматривал моноблоки подобного функционала. Кликаем по выделенному: .

Ко всему выше написанному я бы добавил, что главной фишкой моноблока будет его возможность мгновенно превращаться в планшет с огромной рабочей поверхностью.


На заметку! Кстати, у компании Microsoft есть еще один удивительный моноблок. Чтобы узнать о нем, переходите по .

Технические характеристики

Характеристики я представлю в виде фотографии.


Из периферии отмечу следующее: 4 порта USB, разъем Mini-Display Port, сетевой порт Ethernet, card-reader, аудио гнездо 3,5 мм, веб-камера с 1080р, 2 микрофона, аудиосистема 2.1 Dolby Audio Premium, Wi-Fi и Bluetooth 4.0. Так же моноблок поддерживает беспроводные контроллеры Xbox.





Цена

При покупке моноблока на нем будет установлена ОС Windows 10 Creators Update. Данная система должна выйти весной 2017 года. В данной операционной системе будет обновленный Paint, Office и т. д. Цена на моноблок будет составлять от 3000 долларов.
Дорогие друзья, пишите в комментариях, что вы думаете об этом моноблоке, задавайте интересующие вопросы. Буду рад пообщаться!

Компания OCZ продемонстрировала новые SSD-накопители VX 500. Данные накопители будут оснащаться интерфейсом Serial ATA 3.0 и сделаны они в 2.5-дюймовом форм-факторе.


На заметку! Кому интересно, как работает SSD-диски и сколько они живут, можно прочитать в ранее мною написанной статье: .
Новинки выполнены по 15-нанометровой технологии и будут оснащаться микрочипами флеш-памяти Tochiba MLC NAND. Контроллер в SSD-накопителях будет использоваться Tochiba TC 35 8790.
Модельный ряд накопителей VX 500 будет состоять из 128 Гб, 256 Гб, 512 Гб и 1 Тб. По заявлению производителя последовательна скорость чтения будет составлять 550 Мб/с (это у всех накопителей этой серии), а вот скорость записи составит от 485 Мб/с до 512 Мб/с.


Количество операций ввода/вывода в секунду (IOPS) с блоками данных размером 4 кбайта может достигать 92000 при чтении, а при записи 65000 (это все при произвольном).
Толщина накопителей OCZ VX 500 будет составлять 7 мм. Это позволит использовать их в ультрабуках.




Цены новинок будут следующими: 128 Гб — 64 доллара, 256 Гб — 93 доллара, 512 Гб — 153 доллара, 1 Тб — 337 долларов. Я думаю, в России они будут стоить дороже.

Компания Lenovo на выставке Gamescom 2016 представила свой новый игровой моноблок IdeaCentre Y910.


На заметку! Ранее я писал статью, где уже рассматривал игровые моноблоки разных производителей. Данную статью можно посмотреть, кликнув по этой .


Новинка от Lenovo получила безрамочный дисплей размером 27 дюймов. Разрешение дисплея составляет 2560х1440 пикселей (это формат QHD), частота обновлений равна 144 Гц, а время отклика 5 мс.


У моноблока будет несколько конфигураций. В максимальной конфигурации предусмотрен процессор 6 поколения Intel Core i7, объем жесткого диска до 2 Тб или объемом 256 Гб. Объем оперативной памяти равен 32 Гб DDR4. За графику будет отвечать видеокарта NVIDIA GeForce GTX 1070 либо GeForce GTX 1080 с архитектурой Pascal. Благодаря такой видеокарте к моноблоку можно будет подключить шлем виртуальной реальности.
Из периферии моноблока я бы выделил аудиосистему Harmon Kardon с 5-ваттными динамиками, модуль Killer DoubleShot Pro Wi-Fi, веб-камеру, USB порты 2.0 и 3.0, разъемы HDMI.


В базовом варианте моноблок IdeaCentre Y910 появиться в продаже в сентябре 2016 года по цене от 1800 евро. А вот моноблок с версией «VR-ready» появится в октябре по цене от 2200 евро. Известно, что в этой версии будет стоять видеокарта GeForce GTX 1070.

Компания MediaTek решила модернизировать свой мобильный процессор Helio X30. Так что теперь разработчики из MediaTek проектируют новый мобильный процессор под названием Helio X35.


Я бы хотел вкратце рассказать о Helio X30. Данный процессор имеет 10 ядер, которые объединены в 3 кластера. У Helio X30 есть 3 вариации. Первый - самый мощный состоит из ядер Cortex-A73 с частотой до 2,8 ГГц. Так же есть блоки с ядрами Cortex-A53 с частотой до 2,2 ГГц и Cortex-A35 с частотой 2,0 ГГц.


Новый процессор Helio X35 тоже имеет 10 ядер и создается он по 10-нанометровой технологии. Тактовая частота в этом процессоре будет намного выше, чем у предшественника и составляет от 3,0 Гц. Новинка позволит задействовать до 8 Гб LPDDR4 оперативной памяти. За графику в процессоре скорее всего будет отвечать контроллер Power VR 7XT.
Саму станцию можно увидеть на фотографиях в статье. В них мы можем наблюдать отсеки для накопителей. Один отсек с разъемом 3,5 дюймов, а другой с разъемом 2,5 дюймов. Таким образом к новой станции можно будет подключить как твердотельный диск (SSD), так и жесткий диск (HDD).


Габариты станции Drive Dock составляют 160х150х85мм, а вес ни много ни мало 970 граммов.
У многих, наверное, возникает вопрос, как станция Drive Dock подключается к компьютеру. Отвечаю: это происходит через USB порт 3.1 Gen 1. По заявлению производителя скорость последовательного чтения будет составлять 434 Мб/сек, а в режиме записи (последовательного) 406 Мб/с. Новинка будет совместима с Windows и Mac OS.


Данное устройство будет очень полезным для людей, которые работают с фото и видео материалами на профессиональном уровне. Так же Drive Dock можно использовать для резервных копий файлов.
Цена на новое устройство будет приемлемой — она составляет 90 долларов.

На заметку! Ранее Рендучинтала работал в компании Qualcomm. А с ноября 2015 года он перешел в конкурирующую компанию Intel.


В своем интервью Рендучинтала не стал говорить о мобильных процессорах, а лишь сказал следующее, цитирую: «Я предпочитаю меньше говорить и больше делать».
Таким образом, топ-менеджер Intel своим интервью внес отличную интригу. Нам остается ждать новых анонсов в будущем.