Русский алфавит в двоичном коде. Равномерное алфавитное двоичное кодирование

Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

Answers to Questions

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a number in binary?

To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to convert a text in binary?

Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

Example: AZ is 65,90 () so 1000001,1011010 in binary

Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

How to translate binary

The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is a bit?

A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 1"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1.

Example: 0111 becomes 1000, so 7 becomes -7

You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

What is 2"s complement?

In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

Example: 0111 becomes 1001

Ask a new question

Source code

dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on


Ариабхата
Кириллическая
Греческая Грузинская
Эфиопская
Еврейская
Акшара-санкхья Другие Вавилонская
Египетская
Этрусская
Римская
Дунайская Аттическая
Кипу
Майяская
Эгейская
Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 −1 + 0 * 2 −2 + 1 * 2 −3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.

См. также

Примечания

  1. Попова Ольга Владимировна. Учебное пособие по информатике (неопр.) .

Двоичный код - это подача информации путем сочетания символов 0 или 1. Порою бывает очень сложно понять принцип кодирования информации в виде этих двух чисел, однако мы постараемся все подробно разъяснить.

Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде , открывается незамысловатая истина - бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид - 01010100, E - 01000101 и буква X - 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

Перевод натурального числа десятичной системы счисления в двоичную систему.

Чтобы перевести числа из десятичной системы счисления в двоичную пользуются "алгоритмом замещения", состоящим из такой последовательности действий:

1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет - 0.

2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя - 0.

4. В этот момент считается, что двоичный код готов.

Для примера переведем в двоичную систему число 7:

1. 7: 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

2. 3: 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

3. 1: 2 = 0.5. Снова выбираем 1 по тому же принципу.

4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код - 111.

Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот - перевести число из двоичной в десятичную.

Перевод числа двоичной системы в десятичную.

Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x - порядковое число двоичного кода, а y - степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

Немного из истории двоичной системы счисления.

Принято считать, что впервые двоичную систему предложил Готфрид Вильгельм Лейбниц, который считал систему полезной в сложных математических вычислениях и науке. Но по неким данным, до его предложения о двоичной системе счисления, в Китае появилась настенная надпись, которая расшифровывалась при использовании двоичного кода . На надписи были изображены длинные и короткие палочки. Предполагая, что длинная это 1, а короткая палочка - 0, есть доля вероятности, что в Китае идея двоичного кода существовала многим ранее его официального открытия. Расшифровка кода определила там только простое натуральное число, однако это факт, который им и остается.

Решил сделать такой ниструмент как преобразование текста в двоичный код и обратно, такие сервисы есть, но они как правило работают с латиницей, мой же транслятор работает с кодировкой unicode формата UTF-8 , который кодирует кириллические символы двумя байтами.На данный момент возможности транслятора ограничены двухбайтными кодировками т.е. китайские иероглифы транслировать не получиться, но я собираюсь исправить это досадное недоразумение.

Для преобразования текста в бинарное представление введите текст в левое окошко и нажмите TEXT->BIN в правом окошке появится его двоичное представление.

Для преобразования бинарного кода в текст введите кода в правое окошко и нажмите BIN->TEXT в левом окошке появится его символьное представление.

В случае, если перевод бинарного кода в текст или наоборот не получился - проверьте корректность ваших данных!

Обновление!

Теперь доступно обратное преобразование текста вида:

в нормальный вид. Для этого нужно поставить галочку: "Заменить 0 пробелами, а 1 заполнителем █". Затем вставьте текст в правое окошко: "Текст в бинарном представлении" и нажмите кнопку под ним "BIN->TEXT".

При копировании таких текстов нужно быть осторожным т.к. можно запросто потерять пробелы в начале или в конце. Например строка сверху имеет вид:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

а на красном фоне:

██ █ █ ███████ █ ██ ██ █ █ ███ ██ █ █ ██ █ ██ █ █ ██ █ ███ █ ██ █ █ ██ █ █ ███ ██ █ █ ███ ██ █ ██

видите сколько пробелов в конце можно потерять?

Поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток - нет тока, индукция магнитного поля больше пороговой величины или нет и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину индукции магнитного поля, потребуется ввести два пороговых значения, что не будет способствовать помехоустойчивости и надёжности хранения информации.
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.
  • Возможно применение аппарата алгебры логики для выполнения побитовых операций над числами.

Ссылки

  • Онлайн калькулятор для перевода чисел из одной системы счисления в другую

Wikimedia Foundation . 2010 .

Смотреть что такое "Бинарный код" в других словарях:

    2 битный код Грея 00 01 11 10 3 битный код Грея 000 001 011 010 110 111 101 100 4 битный код Грея 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000 Код Грея система счисления, в которой два соседних значения… … Википедия

    Код сигнальной точки (англ. Signal Point Code (SPC)) сигнальной системы 7 (SS7, ОКС 7) это уникальный (в домашней сети) адрес узла, используемый на третьем уровне MTP (маршрутизация) в телекоммуникационных ОКС 7 сетях для идентификации … Википедия

    В математике бесквадратным называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 бесквадратное, а 18 нет, так как 18 делится на 9 = 32. Начало последовательности бесквадратных чисел таково: 1, 2, 3, 5, 6, 7,… … Википедия

    Для улучшения этой статьи желательно?: Викифицировать статью. Переработать оформление в соответствии с правилами написания статей. Исправить статью согласно стилистическим правилам Википедии … Википедия

    У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия

    В узком смысле слова в настоящее время под словосочетанием понимается «Покушение на систему безопасности», и склоняется скорее к смыслу следующего термина Крэкерская атака. Это произошло из за искажения смысла самого слова «хакер». Хакерская… … Википедия