Закон сохранения заряда — формулировка, формула, примеры опытов. Закон ома для участка и полной замкнутой цепи Силу тока i в замкнутой электрической цепи

Если точки 1 и 2 совпадают, то и выражение закона Ома для участка приобретает более простой вид:

где представляет собой полное сопротивление замкнутой цепи включая внутреннее сопротивление источников, а - алгебраическую сумму э.д.с. в данной цепи.

Ток, возникающий при внешнем сопротивлении равном нулю, называется током короткого замыкания.

Лекция 10.

Соединение проводников.

Используя закон Ома для участка цепи, можно показать, что сопротивление последовательного и параллельного соединения проводников равны соответственно:

Доказательство:

Отметим, что при параллельном соединении проводников, общее сопротивление всегда меньше наименьшего сопротивления в параллельном соединении. Убедитесь в этом самостоятельно.

Закон Джоуля - Ленца.

При прохождении тока через проводник сопротивлением выделяется теплота, которая рассеивается в окружающей среде. Найдем это количество теплоты. Воспользуемся для этого законом сохранения энергии и законом Ома.

Рассмотрим однородный участок цепи, на котором поддерживается постоянная разность потенциалов . Электрическое поле при этом совершает работу:

Если на участке отсутствует превращение в механическую, химическую или иные виды энергии кроме тепловой, то выделяющее количество теплоты равно работе электрического поля:

.

Тепловая мощность при этом равна:

Конечное количество теплоты находится интегрированием по времени:

Это формула выражает закон Джоуля – Ленца. Механизм тепловыделения связан с превращением дополнительной кинетической энергии, которую приобретают носители тока в электрическом поле, в энергию возбуждения колебаний решетки при столкновении носителей с атомами в узлах решетки.

Найдём выражение для закона Джоуля – Ленца в локальной форме. Для этой цели выделим в проводнике элементарный объём в форме цилиндра с образующей вдоль вектора . Пусть поперечное сечение цилиндра , а его длина . Тогда согласно закону Джоуля – Ленца в этом объеме за время выделяется количество теплоты:

где - объём цилиндра. Разделив последнее соотношение на получим формулу которая определяет тепловую мощность, выделяющуюся в единице объёма проводника:

Удельная тепловая мощность измеряется в .

Полученное соотношение выражает закон Джоуля – Ленца в локальной форме: удельная тепловая мощность тока пропорциональна квадрату плотности тока и удельному сопротивлению проводника в данной точке.

В такой форме закон Джоуля – Ленца применим к неоднородным проводникам любой формы, и не зависят от природы сторонних сил. Если на носители действуют только электрические силы, то на основании закона Ома :

Если участок цепи содержит источник э.д.с., то на носители тока будут действовать не только электрические, но и сторонние силы. В этом случае тепло, которое выделяется на участке, равно алгебраической сумме работ электрических и сторонних сил.

Умножим закон Ома в интегральной форме на силу тока :

Здесь слева стоит (тепловая мощность), а справа алгебраическая сумма мощностей электрических и сторонних сил, которую называютмощностью тока.

В замкнутой цепи :

т.е. мощность тепловыделения равна мощности сторонних сил.

Дифференциальный закон Ома

В

ыделим из массива проводника (по которому протекает электрический токI ) маленький цилиндр расположенный вдоль линий электрического тока в проводнике Рис.5.2. Пусть длина цилиндра будет dl а сечение dS . Тогда

О

тсюда

И

спользуя определение для плотности тока (5.1) и для проводимости проводника (5.4) получаем окончательно выражение, которое получило название дифференциальный закон Ома

Работа и мощность, производимые электрическим током

При перемещении заряда между точками с некоторой разностью потенциалов соответствующей падению напряжения U производится работа и мощность:

Э

тот закон был получен экспериментально и получил название закон Джоуля – Ленца. Если подобно предыдущему случаю перейти к рассмотрению малых объемов то нетрудно получить закон Джоуля – Ленца в дифференциальной форме (5.6-5.8):

Законы Кирхгофа

Первое правило Кирхгофа

Рассмотрим электрическую цепь имеющую разветвления Рис.5.3. Точки разветвления будем называть узлами. При установившемся процессе, когда электрический ток протекающий по цепи постоянен потенциалы всех точек цепи так же неизменны. Это может происходить в том случае если электрические заряды не накапливаются и не исчезают в узлах цепи.

Таким образом при установившемся режиме количество притекшего электричества к узлу равно количеству электричества ушедшего из узла. Отсюда вытекает первое правило Кирхгофа:

Алгебраическая сумма сил электрических токов сходящихся в узле равна нулю (5.9) (токи приходящие в узел берутся со знаками +, а токи отходящие от узла со знаком -)

I1+i2+i3-i4-i5=0

ΣI i =0 5.9.

Соединения проводников

На практике часто приходится пользоваться различным соединением проводников

П оследовательное соединение Рис.5.4.

П

ри таком соединении электрический ток во всех участках цепи и на всех ее элементах одинаковI = I 1 = I 2 = I 3 =… I n . Напряжение на концах цепи между точками А и В складывается из напряжений на каждом ее элементе U AB = U 1 + U 2 + U 3 +… U n . Таким образом.

Параллельное соединение Рис.5.5


Закон Ома для замкнутой цепи содержащей э.Д.С.

Р ассмотрим неразветвленную электрическую цепь содержащую Э.Д.С.(E ) с внутренним сопротивлением r и содержащую внешнее сопротивление R Рис.5.6

Полная работа по перемещению заряда по всему контуру будет складываться из работы во внешней цепи и работы внутри источника А=А внешн источн .

Причем работа во внешней цепи отнесенная к величине заряда это по определению разность потенциалов на внешней цепи (падение напряжения на внешней цепи) А внешн / q = U . А работа, по всей цепи отнесенная к заряду это по определению Э.Д.С. A / q = E . Отсюда E = U + А источн / q . С другой стороны А источн = I 2 rt . Отсюда А источн / q = Ir . Таким образом окончательно получаем: E = U + Ir

Или E = I (R + r ) 5.12

Под E подразумевается сумма всех Э.Д.С. входящих в неразветвленную цепь, а под r и R подразумевается сумма всех внутренних и внешних сопротивлений в неразветвленной цепи.

Сила тока одинаковая для всей неразветвленной замкнутой цепи содержащей Э.Д.С. прямо пропорциональна Э.Д.С. и обратно пропорциональна полному сопротивлению цепи.

Второе правило Кирхгофа

Рассмотрим разветвленную цепь Рис.5.7. Участок между двумя соседними узлами назовем ветвью. Так как разветвление имеет место лишь в соседних узлах, то в пределах ветви сила тока сохраняется по величине и направлению. Любую цепь можно рассматривать как совокупность контуров, а для каждого контура справедливо:

В любом замкнутом контуре, мысленно выделенном из электрической цепи алгебраическая сумма произведений сопротивлений соответствующих участков цепи, включая и внутренние сопротивления источников на силу тока в цепи равна алгебораической сумме всех Э.Д.С. в цепи

Закон Ома для замкнутой цепи

Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение зарядов очень быстро приведет к тому, что поле внутри проводника исчезнет и ток прекратится, поэтому для поддержания постоянного тока в течение длительного времени необходимо выполнение двух условий: электрическая цепь должна быть замкнутой; в электрической цепи наряду с участками, на которых положитель-

ные заряды движутся в сторону убывания потенциала, должны быть участки, на которых эти заряды движутся в сторону возрастания потенциала, т. е. против сил электростатического поля (см. изображенную штриховой линией часть цепи на рис. 5).

Перемещать положительные заряды против сил электростатического поля могут только силы неэлектростатического происхождения, называемые сторонними силами. Величина, равная работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС) e , действующей в цепи или на ее участке. ЭДС e измеряется в вольтах (В). Источник ЭДС имеет некоторое внутреннее сопротивление , зависящее от его устройства. Это сопротивление оказывается включенным последовательно с источником в общую электрическую цепь. В качестве источников ЭДС используют гальванические элементы и генераторы постоянного тока (рис. 6).

Если неразветвленная замкнутая электрическая цепь (рис. 7) содержит несколько последовательно соединенных элементов с сопротивлением и источников ЭДС e к , имеющих внутреннее сопротивление то ее можно заменить эквивалентной цепью, изображенной на рис. 6. Сила тока в эквивалентной цепи определяется законом Ома для замкнутой цепи:

;

ЭДС, как и сила тока, есть величина алгебраическая. Если ЭДС способствует движению положительных зарядов в выбранном направлении, то e > 0, если ЭДС препятствует движению положительных зарядов в данном направлении, то e < 0. Чтобы определить знак ЭДС, необходимо показать в электрической цепи направление движения положительных зарядов. Положительные заряды в электрической цепи движутся от положительного полюса источника к отрицательному полюсу. Если по ходу этого направления перейти внутри источника от отрицательного полюса к положительному, то e > 0, если перейти внутри источника от положительного полюса к отрицательному, то e < 0.


Рис. 6 Рис. 7

Из закона Ома для замкнутой цепи следует, что падение напряжения U на зажимах источника меньше, чем ЭДС. Действительно, e , или e . Так как по закону Ома для однородного участка цепи напряжение на зажимах источника , то

3) используя закон Ома для замкнутой цепи, установить связь между силой тока и ЭДС.

Подскажите закон ома

Зако́н Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.
Так случилось, что в этом разделе страницы оказалось две словесных формулировки закона Ома:
1. Суть закона проста: если, при прохождении тока, напряжение и свойства проводника не изменяются, то
сила тока в проводнике прямо пропорциональна напряжению между концами проводника и обратно пропорциональна сопротивлению проводника.
2. Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.
Следует также иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д. , также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Пользователь удален

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы) , пропорциональна напряжению U на концах проводника:

где R = const.
Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.
В СИ единицей электрического сопротивления проводников служит ом (Ом) . Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.
Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.
Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:
IR = U12 = φ1 – φ2 + E = Δφ12 + E.
Это соотношение принято называть обобщенным законом Ома.
На этом рис. изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

По закону Ома,
IR = Δφcd.
Участок (ab) содержит источник тока с ЭДС, равной E.
По закону Ома для неоднородного участка,
Ir = Δφab + E.
Сложив оба равенства, получим:
I(R + r) = Δφcd + Δφab + E.
Но Δφcd = Δφba = – Δφab.
Поэтому

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Little prince

В интегральной форме: i=L*U | L-электропроводность, 1/R
В дифференциальной форме: j=A*E | A- электропроводность среды, j- плотность тока
Для замкнутого контура: i= E/(r+R) | уже приводили.. .
Для переменных токов: uo=io*sqrt (r^2 + (w*L -1/w*C)^2) |uo io - амплитуды тока и напряжения, r- активное сопротивление цепи, что в скобках и в квадрате - реактивная составляющая, sqrt = корень квадратный....

Оля семенова

Зако́н О́ма - эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе - сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля - Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля - Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник - выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

— это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением , а сопротивление источника тока (аккумулятора) - внутренним сопротивление . Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется (V ), что является конечной разностью потенциалов , измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а ), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б ), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи .

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в ), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи .

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть
или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2 . Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме . Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений . Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным . Как видно — .

Особенности резонанса напряжений следующие:

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Закон Ома - физический закон, определяющий зависимость между электрическими величинами - напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.
Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости, стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.
Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r .

Закон Ома для участка цепи

Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

Отсюда следуют ещё два полезных соотношения:

Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).

Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R .
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

Предлагается простой Онлайн-калькулятор для практических расчётов.

Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R , в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I - Сила тока в цепи.
- Электродвижущая сила (ЭДС) - величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.
r - Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR .
Напряжение U , при подключении нагрузки R , всегда будет меньше чем ЭДС на величину произведения I*r , которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = - I*r .
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U .
Если ток в цепи равен нулю, следовательно, = U . Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R .
Такой источник питания называют источником напряжения .

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
В таком случае запись Закона Ома будет иметь вид:

Здесь Z - полное (комплексное) сопротивление цепи - импеданс . В него входит активная R и реактивная X составляющие.
Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.
Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс .

С учётом сдвига фаз φ , созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме :

Комплексная амплитуда тока. = I amp e jφ
- комплексная амплитуда напряжения. = U amp e jφ
- комплексное сопротивление. Импеданс.
φ - угол сдвига фаз между током и напряжением.
e - константа, основание натурального логарифма.
j - мнимая единица.
I amp , U amp - амплитудные значения синусоидального тока и напряжения.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.
Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.
Такие элементы и цепи, в которых они используются, называют нелинейными.

Соединенный проводами с различными электроприборами и потребителями электри-ческой энергии, образует электрическую цепь.

Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления , источники тока, включатели, лампы, при-боры и т. д.) обозначены специальными значками.

Направление тока в цепи — это направление от положи-тельного полюса источника тока к отрицательному. Это пра-вило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с ус-ловным направлением тока. Так, в металлах носителями тока являются отрицательно заряжен-ные электроны, и движутся они от отрицательного полюса к положительному, т. е. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заря-да — положительные или отрицательные.

Включение элементов в электрическую цепь может быть последовательным или параллельным .

Закон Ома для полной цепи.

Рассмотрим электрическую цепь, состоящую из источника тока и ре-зистора R .

Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоя-щим из внешнего сопротивления R и внутреннего сопротивления источ-ника тока r .

Работа сторонних сил A ст источника тока, согласно определению ЭДС (ɛ ) равна A ст = ɛq , где q — заряд , перемещенный ЭДС. Согласно определе-нию тока q = It , где t — время, в течение которого переносился заряд. Отсюда имеем:

A ст = ɛ It .

Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца , равно:

Q = I 2 Rt + I 2 rt .

Согласно закону сохранения энергии А = Q . Приравнивая (A ст = ɛ It ) и (Q = I 2 Rt + I 2 rt ), получим:

ɛ = IR + Ir.

Закон Ома для замкнутой цепи обычно записывается в виде:

.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Если цепь содержит несколько последовательно соединенных ис-точников с ЭДС ɛ 1 , ɛ 2 , ɛ 3 и т. д., то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.

Сторонние силы внутри источника совершают при этом по-ложительную работу . И наоборот, для цепи справедливо следующее уравнение:

ɛ = ɛ 1 + ɛ 2 + ɛ 3 = | ɛ 1 | - | ɛ 2 | -| ɛ 3 | .

В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:

R n = R + r 1 + r 2 + r 3 .