Путеводитель по нотациям и методологиям. Моделирование на UML

Аннотация: Предметом этого курса является The UML - унифицированный язык моделирования. В предыдущей лекции было рассказано о том, что же такое UML, о его истории, назначении, способах использования языка, структуре его определения, терминологии и нотации. Было отмечено, что модель UML - это набор диаграмм. В этой лекции мы рассмотрим такие вопросы: почему нужно несколько видов диаграмм; виды диаграмм; ООП и последовательность построения диаграмм

Прежде чем перейти к обсуждению основного материала этой лекции, давайте поговорим о том, зачем вообще строить какие-то диаграммы. Разработка модели любой системы (не только программной) всегда предшествует ее созданию или обновлению. Это необходимо хотя бы для того, чтобы яснее представить себе решаемую задачу. Продуманные модели очень важны и для взаимодействия внутри команды разработчиков, и для взаимопонимания с заказчиком. В конце концов, это позволяет убедиться в "архитектурной согласованности" проекта до того, как он будет реализован в коде.

Мы строим модели сложных систем, потому что не можем описать их полностью, "окинуть одним взглядом". Поэтому мы выделяем лишь существенные для конкретной задачи свойства системы и строим ее модель, отображающую эти свойства. Метод объектно-ориентированного анализа позволяет описывать реальные сложные системы наиболее адекватным образом. Но с увеличением сложности систем возникает потребность в хорошей технологии моделирования. Как мы уже говорили в предыдущей лекции, в качестве такой "стандартной" технологии используется унифицированный язык моделирования ( Unified Modeling Language , UML ), который является графическим языком для спецификации, визуализации, проектирования и документирования систем. С помощью UML можно разработать подробную модель создаваемой системы, отображающую не только ее концепцию, но и конкретные особенности реализации. В рамках UML -модели все представления о системе фиксируются в виде специальных графических конструкций, получивших название диаграмм.

Примечание . Мы рассмотрим не все, а лишь некоторые из видов диаграмм. Например, диаграмма компонентов не рассматривается в этой лекции, которая является лишь кратким обзором видов диаграмм. Количество типов диаграмм для конкретной модели приложения никак не ограничивается. Для простых приложений нет необходимости строить диаграммы всех без исключения типов. Некоторые из них могут просто отсутствовать, и этот факт не будет считаться ошибкой. Важно понимать, что наличие диаграмм определенного вида зависит от специфики конкретного проекта. Информацию о других (не рассмотренных здесь) видах диаграмм можно найти в стандарте UML.

Почему нужно несколько видов диаграмм

Для начала определимся с терминологией. В предисловии к этой лекции мы неоднократно использовали понятия системы, модели и диаграммы. Автор уверен, что каждый из нас интуитивно понимает смысл этих понятий, но, чтобы внести полную ясность , снова заглянем в глоссарий и прочтем следующее:

Система - совокупность взаимосвязанных управляемых подсистем, объединенных общей целью функционирования.

Да, не слишком информативно. А что же такое тогда подсистема? Чтобы прояснить ситуацию, обратимся к классикам:

Системой называют набор подсистем, организованных для достижения определенной цели и описываемых с помощью совокупности моделей, возможно, с различных точек зрения.

Что ж, ничего не попишешь, придется искать определение подсистемы. Там же сказано, что подсистема - это совокупность элементов, часть из которых задает спецификацию поведения других элементов. Ян Соммервилл объясняет это понятие таким образом:

Подсистема - это система, функционирование которой не зависит от сервисов других подсистем. Программная система структурируется в виде совокупности относительно независимых подсистем. Также определяются взаимодействия между подсистемами.

Тоже не слишком понятно, но уже лучше. Говоря "человеческим" языком, система представляется в виде набора более простых сущностей, которые относительно самодостаточны. Это можно сравнить с тем, как в процессе разработки программы мы строим графический интерфейс из стандартных "кубиков" - визуальных компонентов, или как сам текст программы тоже разбивается на модули, которые содержат подпрограммы, объединенные по функциональному признаку, и их можно использовать повторно, в следующих программах.

С понятием системы разобрались. В процессе проектирования система рассматривается с разных точек зрения с помощью моделей, различные представления которых предстают в форме диаграмм. Опять-таки у читателя могут возникнуть вопросы о смысле понятий модели и диаграммы . Думаем, красивое, но не слишком понятное определение модели как семантически замкнутой абстракции системы вряд ли прояснит ситуацию, поэтому попробуем объяснить "своими словами".

Модель - это некий (материальный или нет) объект , отображающий лишь наиболее значимые для данной задачи характеристики системы. Модели бывают разные - материальные и нематериальные, искусственные и естественные, декоративные и математические...

Приведем несколько примеров. Знакомые всем нам пластмассовые игрушечные автомобильчики, которыми мы с таким азартом играли в детстве, это не что иное, как материальная искусственная декоративная модель реального автомобиля. Конечно, в таком "авто" нет двигателя, мы не заполняем его бак бензином, в нем не работает (более того, вообще отсутствует) коробка передач, но как модель эта игрушка свои функции вполне выполняет: она дает ребенку представление об автомобиле, поскольку отображает его характерные черты - наличие четырех колес, кузова, дверей, окон, способность ехать и т. д.

В ходе медицинских исследований опыты на животных часто предшествуют клиническим испытаниям медицинских препаратов на людях. В таком случае животное выступает в роли материальной естественной модели человека.

Уравнение, изображенное выше - тоже модель, но это модель математическая, и описывает она движение материальной точки под действием силы тяжести.

Осталось лишь сказать, что такое диаграмма . Диаграмма - это графическое представление множества элементов. Обычно изображается в виде графа с вершинами (сущностями) и ребрами (отношениями). Примеров диаграмм можно привести множество. Это и знакомая нам всем со школьных лет блок-схема , и схемы монтажа различного оборудования, которые мы можем видеть в руководствах пользователя, и дерево файлов и каталогов на диске, которое мы можем увидеть, выполнив в консоли Windows команду tree , и многое-многое другое. В повседневной жизни диаграммы окружают нас со всех сторон, ведь рисунок воспринимается нами легче, чем текст...

Но вернемся к проектированию ПО (и не только). В этой отрасли с помощью диаграмм можно визуализировать систему с различных точек зрения . Одна из диаграмм, например, может описывать взаимодействие пользователя с системой, другая - изменение состояний системы в процессе ее работы, третья - взаимодействие между собой элементов системы и т. д. Сложную систему можно и нужно представить в виде набора небольших и почти независимых моделей-диаграмм, причем ни одна из них не является достаточной для описания системы и получения полного представления о ней, поскольку каждая из них фокусируется на каком-то определенном аспекте функционирования системы и выражает разный уровень абстракции . Другими словами, каждая модель соответствует некоторой определенной, частной точке зрения на проектируемую систему.

Несмотря на то что в предыдущем абзаце мы весьма вольготно обошлись с понятием модели, следует понимать, что в контексте приведенных выше определений ни одна отдельная диаграмма не является моделью . Диаграммы - лишь средство визуализации модели, и эти два понятия следует различать. Лишь набор диаграмм составляет модель системы и наиболее полно ее описывает, но не одна диаграмма , вырванная из контекста.

Виды диаграмм

UML 1.5 определял двенадцать типов диаграмм , разделенных на три группы:

  • четыре типа диаграмм представляют статическую структуру приложения;
  • пять представляют поведенческие аспекты системы;
  • три представляют физические аспекты функционирования системы (диаграммы реализации).

Текущая версия UML 2.1 внесла не слишком много изменений. Диаграммы слегка изменились внешне (появились фреймы и другие визуальные улучшения), немного усовершенствовалась нотация , некоторые диаграммы получили новые наименования.

Впрочем, точное число канонических диаграмм для нас абсолютно неважно, так как мы рассмотрим не все из них, а лишь некоторые - по той причине, что количество типов диаграмм для конкретной модели конкретного приложения не является строго фиксированным. Для простых приложений нет необходимости строить все без исключения диаграммы. Например, для локального приложения не обязательно строить диаграмму развертывания. Важно понимать, что перечень диаграмм зависит от специфики разрабатываемого проекта и определяется самим разработчиком. Если же любопытный читатель все-таки пожелает узнать обо всех диаграммах UML , мы отошлем его к стандарту UML (http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML). Напомним, что цель этого курса - не описать абсолютно все возможности UML , а лишь познакомить с этим языком, дать первоначальное представление об этой технологии.

Итак, мы кратко рассмотрим такие виды диаграмм, как:

  • диаграмма прецедентов ;
  • диаграмма классов;
  • диаграмма объектов ;
  • диаграмма последовательностей;
  • диаграмма взаимодействия;
  • диаграмма состояний;
  • диаграмма активности ;
  • диаграмма развертывания .

О некоторых из этих диаграмм мы будем говорить подробнее в следующих лекциях. Пока же мы не станем заострять внимание на подробностях, а зададимся целью научить читателя хотя бы визуально различать виды диаграмм, дать начальное представление о назначении основных видов диаграмм. Итак, начнем.

Диаграмма прецедентов (use case diagram)

Любые (в том числе и программные) системы проектируются с учетом того, что в процессе своей работы они будут использоваться людьми и/или взаимодействовать с другими системами. Сущности, с которыми взаимодействует система в процессе своей работы, называются экторами , причем каждый эктор ожидает, что система будет вести себя строго определенным, предсказуемым образом. Попробуем дать более строгое определение эктора. Для этого воспользуемся замечательным визуальным словарем по UML Zicom Mentor :

Эктор (actor) - это множество логически связанных ролей, исполняемых при взаимодействии с прецедентами или сущностями (система, подсистема или класс). Эктором может быть человек или другая система, подсистема или класс, которые представляют нечто вне сущности.

Графически эктор изображается либо " человечком ", подобным тем, которые мы рисовали в детстве, изображая членов своей семьи, либо символом класса с соответствующим стереотипом , как показано на рисунке. Обе формы представления имеют один и тот же смысл и могут использоваться в диаграммах. "Стереотипированная" форма чаще применяется для представления системных экторов или в случаях, когда эктор имеет свойства и их нужно отобразить (рис. 2.1).

Внимательный читатель сразу же может задать вопрос: а почему эктор, а не актер ? Согласны, слово "эктор" немного режет слух русского человека. Причина же, почему мы говорим именно так, проста - эктор образовано от слова action , что в переводе означает действие . Дословный же перевод слова "эктор" - действующее лицо - слишком длинный и неудобный для употребления. Поэтому мы будем и далее говорить именно так.


Рис. 2.1.

Тот же внимательный читатель мог заметить промелькнувшее в определении эктора слово "прецедент". Что же это такое? Этот вопрос заинтересует нас еще больше, если вспомнить, что сейчас мы говорим о диаграмме прецедентов . Итак,

Прецедент (use-case) - описание отдельного аспекта поведения системы с точки зрения пользователя (Буч).

Определение вполне понятное и исчерпывающее, но его можно еще немного уточнить, воспользовавшись тем же Zicom Mentor "ом:

Прецедент (use case) - описание множества последовательных событий (включая варианты), выполняемых системой, которые приводят к наблюдаемому эктором результату. Прецедент представляет поведение сущности, описывая взаимодействие между экторами и системой. Прецедент не показывает, "как" достигается некоторый результат, а только "что" именно выполняется.

Прецеденты обозначаются очень простым образом - в виде эллипса, внутри которого указано его название. Прецеденты и экторы соединяются с помощью линий . Часто на одном из концов линии изображают рис. 2.3

  • формирование общих требований к поведению проектируемой системы;
  • разработка концептуальной модели системы для ее последующей детализации;
  • подготовка документации для взаимодействия с заказчиками и пользователями системы.
  • Язык Unified Modelling Language (UML) можно считать результатом довольно длинной и еще не завершившейся эволюции методологий моделирования и дизайна.В 90-х годах наиболее популярными были три объектно-ориентированных подхода: OMT (автор Джеймс Рамбо), сильной стороной которого является анализ, а слабой - дизайн; OODA (автор Гради Буч) - сильная сторона этого языка - дизайн, а слабая - анализ; OOSE (автор Айвар Якобсон) - сильной стороной данного языка является анализ поведения (behavior analysis), однако в остальных областях он достаточно слаб.В результате соперничества этих методов авторы вышеперечисленных методологий создали унифицированный язык моделирования UML (рис. 1), который унаследовал присутствовавшие в других языках элементы. Далее приведена оригинальная терминология заимствованных/унаследованных элементов языка этой методологии - дело в том, что сейчас существует несколько вариантов переводов этих терминов на русский язык.Данная унификация преследовала три основные цели: моделирование системы, начиная с концепции и заканчивая исполняемым модулем, с применением объектно-ориентированных методик; разрешение проблем масштабирования в сложных системах; создание языка моделирования, используемого и человеком, и компьютером.Официальной датой начала работ по UML считают октябрь 1994 года, когда Рамбо перешел в компанию Rational (ныне Rational - одно из подразделений корпорации IBM). Последним стандартом этого языка является версия UML1.3, вышедшая в 1999 году.Средства UML-моделирования Является ли UML необходимым компонентом RUP? Да, безусловно. Но практика использования UML как средства описания процесса моделирования и разработки программного обеспечения не ограничивается RUP. Как и любой другой язык, UML - это всего только средство. В RUP предусмотрен ряд утилит, позволяющих довольно легко использовать UML, но их набор не ограничивается лишь продуктами IBM/Rational. Ниже приводится далеко не полный список некоторых продуктов, поддерживающих UML: Rational Rose (Rational Software, Windows 98/NT/2000/XP, Linux Red Hat 6.2, 7.0, Solaris 2.5.1, 2.6, 7, 8, HP-UX 10.20, 11.0, 11.i); Microsoft Visual Studio .NET Enterprise Architect, Microsoft Visio (Microsoft, платформы: Windows 8/NT/2000/XP/Server 2003); Describe Enterprise (Embarcadero technologies, платформы: Windows 98/NT/2000/XP); семейство продуктов Together (Borland, платформы: Windows 98/NT/2000/XP, Linux, Solaris);

    Bold for Delphi (Borland, платформы: Windows 98/NT/2000/XP);

    MagicDraw (Magic, Inc., платформы: Windows 98/Me/NT/2000/XP, Solaris, OS/2, Linux, HP-UX, AIX, Mac OS);

    QuickUML (ExcelSoftware, платформы: Windows 98/NT/2000/XP) - неплохая утилита для начинающих.


    Отметим также некоторые продукты OpenSourse, например ArgoUML, Novosoft UML Library.

    Документ, который содержит списки продуктов, поддерживающих UML, компаний-производителей, платформ, а также информацию о примерных ценах продуктов, можно найти по адресу: http://www.objectsbydesign.com/tools/umltools_byCompany.html.

    Следует также отметить, что, несмотря на факт существования стандарта UML 1.3, поддерживаемые перечисленными продуктами реализации UML или обладают собственными особенностями, или не полностью следуют стандарту, поэтому при выборе средства моделирования следует обращать внимание на поддерживаемые типы диаграмм и особенности синтаксиса. Кроме того, возможности прямого и обратного проектирования (Round-Trip Engineering) в разных продуктах весьма различны. Не все вышеуказанные продукты могут поддерживать языки программирования Java, C++, CORBA IDL, поэтому следует обращать особое внимание на то, какую модель сможет сгенерировать тот или иной продукт из имеющегося у вас кода, на каком языке может быть получен код из вашей UML-модели и какого она должна быть типа.Таблица, показывающая, какие диаграммы UML реализованы в том или ином продукте, находится по адресу: http://www.jeckle.de/umltools.htm.

    Для чего применяется UML

    UML - прежде всего язык, и, как всякое языковое средство, он предоставляет словарь и правила комбинирования слов в этом словаре. В данном случае словарь и правила фокусируются на концептуальном и физическом представлениях системы. Язык диктует, как создать и прочитать модель, однако не содержит никаких рекомендаций о том, какую модель системы необходимо создать, - это выходит за рамки UML и является прерогативой процесса разработки программного обеспечения. В связи с этим, видимо, UML довольно часто ассоциируют с RUP - одним из возможных процессов, рекомендующих, какие модели, как и когда нужно создавать для успешной разработки продукта.

    UML - это язык визуализации. Написание моделей на UML преследует одну простую цель - облегчение процесса передачи информации о системе. За каждым символом UML стоит строго определенная семантика, что позволяет избегать ошибок интерпретации (ответы на вопросы типа «а что имел в виду разработчик Х, когда он описал иерархию классов Y…» и т.п. будут достаточно прозрачны).

    UML - это язык спецификаций и точных определений. В этом смысле моделирование на UML означает построение моделей, которые точны, недвусмысленны и полны.

    UML - это язык конструирования. UML не является визуальным языком программирования, но модели в терминах UML могут быть отображены на определенный набор объектно-ориентированных языков программирования. UML предоставляет возможности прямого (существующая модель ® новый код) и обратного (существующий код ® новая модель) проектирования. Достаточно часто средства UML-моделирования реализуют отображения UML-моделей в коде на языках Java, C++, CORBA, VB, Smalltalk.

    UML - это язык документирования. Процесс разработки программного обеспечения предусматривает не только написание кода, но и создание таких артефактов, как список требований, описание архитектуры, дизайн, исходный код системы, планирование проекта, тесты, набор прототипов, релизы продукта. В зависимости от культуры разработки продукта в той или иной компании степень формализации данных документов существенно различается, варьируясь от строго определенных шаблонов и формата документов до разговоров на произвольную тему по e-mail или лично. Тем не менее все эти артефакты критичны для успешного процесса разработки продукта. UML предоставляет средства отображения требований к системе, построения документации, тестов, моделирования необходимых действий для планирования проекта и для управления поставленными конечному пользователю релизами.

    Структурные диаграммы: Диаграмма классов Диаграмма компонентов Композитной составной структуры Диаграмма кооперации UML2.0 Диаграмма развёртывания Диаграмма объектов Диаграмма пакетов Диаграмма профилей UML2.2 Диаграммы поведения: Диаграмма деятельности Диаграмма состояний Диаграмма прецедентов Диаграммы взаимодействия: Диаграмма коммуникации UML2.0 Диаграмма кооперации UML1.


    Поделитесь работой в социальных сетях

    Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


    Методология UML. UML-диаграммы.

    Методология UML

    UML (англ. Unified Modeling Language — унифицированный язык моделирования) — язык графического описания для объектного моделирования в области разработки программного обеспечения . UML является языком широкого профиля, это открытый стандарт , использующий графические обозначения для создания абстрактной модели системы , называемой UML-моделью . UML был создан для определения, визуализации, проектирования и документирования в основном программных систем. UML не является языком программирования, но в средствах выполнения UML-моделей как интерпретируемого кода возможна кодогенерация.

    Использование UML не ограничивается моделированием программного обеспечения. Его также используют для моделирования бизнес-процессов , системного проектирования и отображения организационных структур .

    Использование

    UML позволяет также разработчикам программного обеспечения достигнуть соглашения в графических обозначениях для представления общих понятий (таких как класс, компонент, обобщение (generalization), объединение (aggregation) и поведение), и больше сконцентрироваться на проектировании и архитектуре.

    Диаграммы

    В UML используются следующие виды диаграмм (для исключения неоднозначности приведены также обозначения на английском языке):

    Structure Diagrams:

    • Class diagram
    • Component diagram
    • Composite structure diagram
      • Collaboration (UML2.0)
    • Deployment diagram
    • Object diagram
    • Package diagram
    • Profile diagram (UML2.2)

    Behavior Diagrams:

    • Activity diagram
    • State Machine diagram
    • Use case diagram
    • Interaction Diagrams:
      • Communication diagram (UML2.0) / Collaboration (UML1.x)
      • Interaction overview diagram (UML2.0)
      • Sequence diagram
      • Timing diagram (UML2.0)

    Структурные диаграммы:

    • Диаграмма классов
    • Диаграмма компонентов
    • Композитной/составной структуры
      • Диаграмма кооперации (UML2.0)
    • Диаграмма развёртывания
    • Диаграмма объектов
    • Диаграмма пакетов
    • Диаграмма профилей (UML2.2)

    Диаграммы поведения:

    • Диаграмма деятельности
    • Диаграмма состояний
    • Диаграмма прецедентов
    • Диаграммы взаимодействия:
      • Диаграмма коммуникации (UML2.0) / Диаграмма кооперации (UML1.x)
      • Диаграмма обзора взаимодействия (UML2.0)
      • Диаграмма последовательности
      • Диаграмма синхронизации (UML2.0)

    Структуру диаграмм UML 2.3 можно представить на диаграмме классов UML:

    Диаграмма классов

    Диаграмма классов (Class diagram) — статическая структурная диаграмма, описывающая структуру системы, она демонстрирует классы системы, их атрибуты, методы и зависимости между классами.

    Существуют разные точки зрения на построение диаграмм классов в зависимости от целей их применения:

    • концептуальная точка зрения — диаграмма классов описывает модель предметной области, в ней присутствуют только классы прикладных объектов;
    • точка зрения спецификации — диаграмма классов применяется при проектировании информационных систем;
    • точка зрения реализации — диаграмма классов содержит классы, используемые непосредственно в программном коде (при использовании объектно-ориентированных языков программирования).

    Диаграмма компонентов

    Диаграмма компонентов (Component diagram) — статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами. В качестве физических компонент могут выступать файлы, библиотеки, модули, исполняемые файлы, пакеты и т. п.

    Шаблон проектирования Декоратор на диаграмме кооперации

    Диаграмма композитной/составной структуры (Composite structure diagram) — статическая структурная диаграмма, демонстрирует внутреннюю структуру классов и, по возможности, взаимодействие элементов (частей) внутренней структуры класса.

    Подвидом диаграмм композитной структуры являются диаграммы кооперации (Collaboration diagram, введены в UML 2.0), которые показывают роли и взаимодействие классов в рамках кооперации. Кооперации удобны при моделировании шаблонов проектирования .

    Диаграммы композитной структуры могут использоваться совместно с диаграммами классов.

    Диаграмма развёртывания

    Диаграмма развёртывания (Deployment diagram) — служит для моделирования работающих узлов (аппаратных средств, англ. node ) и артефактов , развёрнутых на них. В UML 2 на узлах разворачиваются артефакты (англ. artifact ), в то время как в UML 1 на узлах разворачивались компоненты. Между артефактом и логическим элементом (компонентом), который он реализует, устанавливается зависимость манифестации.

    Диаграмма объектов

    Диаграмма объектов (Object diagram) — демонстрирует полный или частичный снимок моделируемой системы в заданный момент времени. На диаграмме объектов отображаются экземпляры классов (объекты) системы с указанием текущих значений их атрибутов и связей между объектами.

    Диаграмма пакетов

    Диаграмма пакетов (Package diagram) — структурная диаграмма, основным содержанием которой являются пакеты и отношения между ними. Жёсткого разделения между разными структурными диаграммами не проводится, поэтому данное название предлагается исключительно для удобства и не имеет семантического значения (пакеты и диаграммы пакетов могут присутствовать на других структурных диаграммах). Диаграммы пакетов служат, в первую очередь, для организации элементов в группы по какому-либо признаку с целью упрощения структуры и организации работы с моделью системы.

    Диаграмма деятельности

    Диаграмма деятельности (Activity diagram) — диаграмма, на которой показано разложение некоторой деятельности на её составные части. Под деятельностью (англ. activity ) понимается спецификация исполняемого поведения в виде координированного последовательного и параллельного выполнения подчинённых элементов — вложенных видов деятельности и отдельных действий (англ. action ), соединённых между собой потоками, которые идут от выходов одного узла к входам другого.

    Диаграммы деятельности используются при моделировании бизнес-процессов, технологических процессов, последовательных и параллельных вычислений.

    Аналогом диаграмм деятельности являются схемы алгоритмов по ГОСТ 19.701-90.

    Диаграмма автомата

    Диаграмма автомата (State Machine diagram, диаграмма конечного автомата , диаграмма состояний ) — диаграмма, на которой представлен конечный автомат с простыми состояниями , переходами и композитными состояниями.

    Конечный автомат (англ. State machine ) — спецификация последовательности состояний, через которые проходит объект или взаимодействие в ответ на события своей жизни, а также ответные действия объекта на эти события. Конечный автомат прикреплён к исходному элементу (классу , кооперации или методу) и служит для определения поведения его экземпляров.

    Диаграмма вариантов использования (Use case diagram) — диаграмма, на которой отражены отношения, существующие между акторами и вариантами использования .

    Основная задача — представлять собой единое средство, дающее возможность заказчику, конечному пользователю и разработчику совместно обсуждать функциональность и поведение системы.

    Диаграммы коммуникации и последовательности транзитивны , выражают взаимодействие, но показывают его различными способами и с достаточной степенью точности могут быть преобразованы одна в другую.

    Диаграмма коммуникации (Communication diagram, в UML 1.x — диаграмма кооперации , collaboration diagram ) — диаграмма, на которой изображаются взаимодействия между частями композитной структуры или ролями кооперации. В отличие от диаграммы последовательности, на диаграмме коммуникации явно указываются отношения между элементами (объектами), а время как отдельное измерение не используется (применяются порядковые номера вызовов).

    Диаграмма последовательности (Sequence diagram) — диаграмма, на которой изображено упорядоченное во времени взаимодействие объектов. В частности, на ней изображаются участвующие во взаимодействии объекты и последовательность сообщений, которыми они обмениваются.

    Диаграмма сотрудничества — Этот тип диаграмм позволяет описать взаимодействия объектов, абстрагируясь от последовательности передачи сообщений. На этом типе диаграмм в компактном виде отражаются все принимаемые и передаваемые сообщения конкретного объекта и типы этих сообщений.

    По причине того, что диаграммы Sequence и Collaboration являются разными взглядами на одни и те же процессы, Rational Rose позволяет создавать из Sequence диаграммы диаграмму Collaboration и наоборот, а также производит автоматическую синхронизацию этих диаграмм.

    Диаграмма обзора взаимодействия (Interaction overview diagram) — разновидность диаграммы деятельности, включающая фрагменты диаграммы последовательности и конструкции потока управления.

    Этот тип диаграмм включает в себя диаграммы Sequence diagram (диаграммы последовательностей действий) и Collaboration diagram (диаграммы сотрудничества). Эти диаграммы позволяют с разных точек зрения рассмотреть взаимодействие объектов в создаваемой системе.

    Диаграмма синхронизации

    Диаграмма синхронизации (Timing diagram) — альтернативное представление диаграммы последовательности, явным образом показывающее изменения состояния на линии жизни с заданной шкалой времени. Может быть полезна в приложениях реального времени.

    PAGE 7

    Другие похожие работы, которые могут вас заинтересовать.вшм>

    13400. ПОСТРОЕНИЕ ПРИЧИННО-СЛЕДСТВЕННОЙ ДИАГРАММЫ ИСИКАВЫ 140.47 KB
    Диаграмма Исикавы внешне напоминает рыбий скелет поэтому ее часто так и называют рис. Причины Следствие Рис. в качестве крупных выступают следующие пять костей рис. Рис.
    2628. Методология IDEF3 113.73 KB
    Название связи Вид связи Смысл связи Связь предшествования Обозначает что вторая работа начинает выполняться после завершения первой работы. Связь отношения Обозначает что вторая работа может начаться и даже закончиться до того момента когда закончится выполнение первой работы. В данном случае вторая работа начинает выполняться после завершения первой работы. При этом выходом первой работы объект название которого надписано над стрелкой в данном случае документ.
    350. Методология SADT 9.44 KB
    Таким образом разработчики решили формализовать процесс создания системы разбив его на следующие фазы: Анализ определение того что система будет делать Проектирование определение подсистем и их взаимодействие Реализация разработка подсистем по отдельности объединение соединение подсистем в единое целое Тестирование проверка работы системы Установка введение системы в действие Эксплуатация использование системы.
    7925. Методология комплексного ЭА ХД 9.04 KB
    Зависимости объемов выпуска продукции от трудовых факторов выражается следующим образом: Nb = R Tд Тч Дч где Nb объем выпуска продукции R среднесписочное число рабочих Тд число дней отработанных одним рабочим за год Тч среднее число часов отработанных одним рабочим за день Дч средняя выработка продукции на 1 отработанный человекочас. Задача: На основе определить за счет каких факторов произошло изменение сумм взимаемых таможенных платежей Оренбургской таможни. Факторные анализ – это процесс комплексного и...
    7620. Философия и методология науки 14.31 KB
    Структура научного познания Научное познание это процесс получения объективного истинного знания направленного на отражение закономерностей действительности. Уровни научного познания: эмпирический выявление объективных фактов как правило со стороны их очевидных связей; теоретический выявление фундаментальных закономерностей обнаружение за видимыми проявлениями скрытых внутренних связей и отношений. Формы научного познания научный факт эмпирический закон проблема гипотеза теория. Методы научного познания наблюдение...
    7651. Методология энергетического аудита 6.19 KB
    С другой стороны энергоаудит может быть комплексным и трудоемким процессом по определению и идентификации всех направлений расходования энергии и предусматривать установку нового постоянного измерительного оборудования тестирование и измерение в течение длительного периода времени и в результате детальной проверки выдаст детальные рекомендации. Составив несколько первых отчётов по энергоаудиту новичок будет сознавать актуальность и важность рекомендаций по экономии энергии таких например как использование светильников с низким...
    9173. Механика и методология Ньютона 17.2 KB
    Одним из первых, кто задумался о сущности движения, был Аристотель. Аристотель определяет движение как изменение положения тела в пространстве. Пространство, по Аристотелю, целиком заполнено материей, неким подобием эфира или прозрачной, как воздух субстанцией. Пустоты в природе нет («природа боится пустоты»).
    9174. Методология научных исследований 91.85 KB
    Методы эмпирического и теоретического познания. Методы научного познания включают так называемые всеобщие методы т. общечеловеческие приемы мышления общенаучные методы и методы конкретных наук. Методы могут быть классифицированы и по соотношению эмпирического знания т.
    4698. МЕТОДОЛОГИЯ НАУЧНОГО ИССЛЕДОВАНИЯ 35.45 KB
    Метод – это совокупность приемов и операций практического и теоретического освоения действительности. Основная функция метода – внутренняя организация и регулирование процесса познания или практического преобразования того или иного объекта.
    346. Функциональное моделирование. Методология IDEF0 136.7 KB
    Методология IDEF0. История возникновения стандарта IDEF0 Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SDT Structured nlysis nd Design Teqnique. Исторически IDEF0 как стандарт был разработан в 1981 году в рамках обширной программы автоматизации промышленных предприятий которая носила обозначение ICM Integrted Computer ided Mnufcturing и была предложена департаментом ВоенноВоздушных Сил США. Собственно семейство стандартов IDEF унаследовало свое...

    В настоящее время фирма Rational Software является безусловным лидером в области объектно-ориентированного анализа и проектирования информационных систем с компонентной архитектурой. Разрабатываемая этой фирмой методология, основанная на использовании унифицированного языка моделирования (UML - Unified Modeling Language в настоящее время принят OMG в качестве стандарта), поддержана целым спектром инструментальных программных средств визуального моделирования, совместной разработки (поддерживаются основные языки программирования C++, Java, Visual Basic, SmallTalk и др., а также популярные среды разработки - MS Visual Studio, Delphi, PowerBuilder), автоматизированного тестирования и документирования, охватывающих жизненный цикл создания программных систем .

    Помимо Rational Rose, продукта фирмы Rational Software, к числу популярных средств визуального моделирования, поддерживающих стандарты UML, можно отнести Paradigm Plus (программный продукт фирмы PLATINUM Technology), SELECT (SELECT Software), Oracle Designer (Oracle), Together Control Center (Borland), AllFusion Component Modeler (Computer Associates) и Microsoft Visual Modeler (Rational Software&Microsoft Corporation).

    Rational Rose. Популярное средство визуального моделирования объектно-ориентированных информационных систем компании Rational Software Согр. Работа продукта основана на универсальном языке моделирования UML (Universal Modeling Language). Благодаря уникальному языку моделирования Rational Rose способен решать практически любые задачи в проектировании информационных систем: от анализа бизнес-процессов до кодогенерации на определенном языке программирования. Только Rose позволяет разрабатывать как высокоуровневые, так и низкоуровневые модели, осуществляя тем самым либо абстрактное проектирование, либо логическое .

    Rational Rose поддерживает прямое и обратное проектирование на языках: ADA, Java, С, C++, Basic. Поддерживает технологии COM, DDL, XML. Позволяет генерировать схемы Oracle и SQL.

    Rational Rose имеет открытый API, позволяющий создавать собственными силами модули для конкретных языков программирования.

    Select Yourdon. Эта система разработана фирмой Select Software Tools Ltd. (England). Select Yourdon поддерживает фазы анализа требований и проектирования программной системы, что покрывает полностью начальный период разработки вплоть до кодирования модулей. При этом поддерживаются следующие виды структурных методов (диаграмм) :

    • диаграммы отношения сущностей;
    • диаграммы потоков данных и управления, базирующиеся на нотации Yourdon/Ward & Mellor и Hatley;
    • диаграммы переходов состояний;
    • мини-спецификации процессов;
    • структурные диаграммы Константайна (Constantine);
    • структурные диаграммы Джексона (Jackson).

    Первые три вида диаграмм и мини-спецификации процессов могут использоваться для анализа и формулировки требований к ПО, последние два - для проектирования архитектуры ПО и его отдельных модулей. База данных проекта сосредоточена в так называемом словаре данных (Data Dictionary). Система поддерживает как однопользовательскую работу, так и работу в сети коллектива разработчиков.

    Oracle Designer. Набор инструментальных средств Oracle Designer предлагает интегрированное решение для разработки прикладных систем корпоративного уровня для Web и клиент/серверных приложений. Oracle Designer участвует в каждой фазе жизненного цикла разработки программного обеспечения - от моделирования бизнес- процессов до внедрения. Применение единого репозитория делает возможным использование любых его компонент для быстрой разработки масштабируемых, кросс-платформных распределенных приложений .

    Задачей Oracle Designer является сбор данных о потребностях пользователей и автоматизация построения гибких графических приложений. Oracle Designer используется не только для создания приложений, но и для ведения учета изменений, которые неизбежно происходят при эксплуатации системы.

    Графические модели определений проекта, интегрированные с многопользовательским репозиторием существенно облегчают работу с Oracle Designer. Инструментальные средства построены на базе общепринятых методик, охватывающих весь жизненный цикл разработки. Это обеспечивает гибкость и открытость подхода к разработке программного обеспечения за счет использования только тех частей продукта, которые требуются в данной задаче. В рамках процесса разработки обеспечивается поддержка методов RAD, JAD, информационного проектирования, водопадного метода (waterfall), итеративного метода, а также индивидуального подхода, выбранного компанией.

    Microsoft Visual Modeler. Microsoft Visual Modeler (MSVM) - инструмент визуального моделирования, разработанный Rational Software совместно c Microsoft Corporation, обеспечивает базируемое на UML моделирование для проектирования приложений на основе компонентов. Модели, созданные с использованием MSVM, могут автоматически выполнять генерацию объектного кода для проектов, реализуемых в средах разработки Visual Basic 6.0 и Visual C++ .

    Microsoft Visual Modeler поддерживает архитектуру Windows-распределенных интернет-приложений (Windows DNA), которая позволяет разработчикам уровня предприятия строить масштабируемые, многоуровневые бизнес-приложения, которые могут быть установлены в любой сети.

    Последняя версия Microsoft Visual Modeler предлагает беспрецедентный уровень интеграции между визуальным моделированием и средой разработки Visual Studio, включает обновленные возможности как для разработчиков Visual Basic, так и для поддержки разработки в среде Visual C++.

    Windows DNA, Visual Studio и Microsoft Visual Modeler (MSVM) обеспечивают правильную комбинацию инфраструктуры и инструментов проектирования для создания нового поколения п-уровне- вых, создаваемых на основе компонентов приложений.

    MSVM упрощает построение сложных, многоуровневых бизнес- приложений, основанных на Windows DNA, позволяя разработчикам наглядно в графическом виде представлять организацию их приложений.

    Новые возможности Microsoft Visual Modeler включают интеграцию с Microsoft Visual SourceSafe системой контроля версий; интеграцию с Microsoft Visual Manager (VCM) и улучшенную поддержку Microsoft Repository для разработок на основе Visual Basic. Расширения Visual Modeler для поддержки групповой разработки включают возможность опубликования моделей в репозитории через VCM; в дальнейшем возможен просмотр моделей и их совместное использование членами группы разработчиков. Компоненты могут быть импортированы из репозитория через VCM посредством техники drag-and-drop. Точно так же интерфейсные компоненты СОМ могут быть импортированы из Windows Explorer.

    Microsoft Visual Modeler - наиболее простой в освоении инструмент из семейства Rational Rose, мирового лидера среди инструментов визуального моделирования, использует общую кодовую основу и предлагает масштабируемый, интегрированный, полностью совместимый набор решений визуального моделирования для программистов, использующих Visual Basic и/или Visual C++. Visual Modeler поддерживает Унифицированный Язык Моделирования (UML), разработанный таким образом, что даже разработчики, не имеющие опыта в визуальном моделировании, легко его осваивают и успешно создают модели.

    Семейство продуктов AllFusion. Component Modeler - базовый компонент комплекта AllFusion Modeling Suite компании Computer Associates. Комплект также включает в себя: Process Modeler (ранее - BPwin), который объединяет моделирование бизнес-процессов, потоков данных и рабочей деятельности в одном простом в использовании инструменте; ERwin Data Modeler (ранее - ERwin), применяемый для моделирования баз данных, и Data Model Validator (ранее - ERwin Examiner) для улучшения согласованности и качества моделей данных. Component Modeler и ERwin Data Modeler работают совместно, что дает возможность разработчикам и аналитикам баз данных приводить информацию в реляционных базах данных к виду, пригодному для использования объектно-ориентированными приложениями. Модели бизнес-процессов Process Modeler могут быть синхронизированы с моделями данных ERwin Data Modeler для обеспечения оптимальной поддержки бизнес-процессов организации .

    Семейство AllFusion состоит из средств, предназначенных для управления процессами и проектами, моделирования и разработки, публикации знаний и визуализации. ПО семейства AllFusion улучшает способность автоматизировать процессы жизненного цикла критически важных приложений, что соответствует потребностям постоянно усложняющегося и изменчивого мира электронного бизнеса.

    UML – это унифицированный графический язык моделирования для описания, визуализации, проектирования и документирования ОО систем. UML призван поддерживать процесс моделирования ПС на основе ОО подхода, организовывать взаимосвязь концептуальных и программных понятий, отражать проблемы масштабирования сложных систем. Модели на UML используются на всех этапах жизненного цикла ПС, начиная с бизнес-анализа и заканчивая сопровождением системы. Разные организации могут применять UML по своему усмотрению в зависимости от своих проблемных областей и используемых технологий.

    Краткая история UML

    К середине 90-х годов различными авторами было предложено несколько десятков методов ОО моделирования, каждый из которых использовал свою графическую нотацию. При этом любой их этих методов имел свои сильные стороны, но не позволял построить достаточно полную модель ПС, показать ее «со всех сторон», то есть, все необходимые проекции (См. статью 1). К тому же отсутствие стандарта ОО моделирования затрудняло для разработчиков выбор наиболее подходящего метода, что препятствовало широкому распространению ОО подхода к разработке ПС.

    По запросу Object Management Group (OMG) – организации, ответственной за принятие стандартов в области объектных технологий и баз данных назревшая проблема унификации и стандартизации была решена авторами трех наиболее популярных ОО методов – Г.Бучем, Д.Рамбо и А.Джекобсоном, которые объединенными усилиями создали версию UML 1.1, утвержденную OMG в 1997 году в качестве стандарта.

    UML – это язык

    Любой язык состоит из словаря и правил комбинирования слов для получения осмысленных конструкций. Так, в частности, устроены языки программирования, таковым является и UML. Отличительной его особенностью является то, что словарь языка образуют графические элементы. Каждому графическому символу соответствует конкретная семантика, поэтому модель, созданная одним разработчиком, может однозначно быть понята другим, а также программным средством, интерпретирующим UML. Отсюда, в частности, следует, что модель ПС, представленная на UML, может автоматически быть переведена на ОО язык программирования (такой, как Java, C++, VisualBasic), то есть, при наличии хорошего инструментального средства визуального моделирования, поддерживающего UML, построив модель, мы получим и заготовку программного кода, соответствующего этой модели.

    Следует подчеркнуть, что UML – это именно язык, а не метод. Он объясняет, из каких элементов создавать модели и как их читать, но ничего не говорит о том, какие модели и в каких случаях следует разрабатывать. Чтобы создать метод на базе UML, надо дополнить его описанием процесса разработки ПС. Примером такого процесса является Rational Unified Process, который будет рассматриваться в последующих статьях.

    Словарь UML

    Модель представляется в виде сущностей и отношений между ними, которые показываются на диаграммах.

    Сущности – это абстракции, являющиеся основными элементами моделей. Имеется четыре типа сущностей – структурные (класс, интерфейс, компонент, вариант использования, кооперация, узел), поведенческие (взаимодействие, состояние), группирующие (пакеты) и аннотационные (комментарии). Каждый вид сущностей имеет свое графическое представление. Сущности будут подробно рассмотрены при изучении диаграмм.

    Отношения показывают различные связи между сущностями. В UML определены следующие типы отношений:

    • Зависимость показывает такую связь между двумя сущностями, когда изменение одной из них – независимой – может повлиять на семантику другой – зависимой. Зависимость изображается пунктирной стрелкой, направленной от зависимой сущности к независимой.
    • Ассоциация – это структурное отношение, показывающее, что объекты одной сущности связаны с объектами другой. Графически ассоциация показывается в виде линии, соединяющей связываемые сущности. Ассоциации служат для осуществления навигации между объектами. Например, ассоциация между классами «Заказ» и «Товар» может быть использована для нахождения всех товаров, указанных в конкретном заказе – с одной стороны, или для нахождения всех заказов в которых есть данный товар, – с другой. Понятно, что в соответствующих программах должен быть реализован механизм, обеспечивающий такую навигацию. Если требуется навигация только в одном направлении, оно показывается стрелкой на конце ассоциации. Частным случаем ассоциации является агрегирование – отношение вида «целое» – «часть». Графически оно выделяется с помощью ромбика на конце около сущности-целого.
    • Обобщение – это отношение между сущностью-родителем и сущностью-потомком. По существу, это отношение отражает свойство наследования для классов и объектов. Обобщение показывается в виде линии, заканчивающейся треугольничком направленным к родительской сущности. Потомок наследует структуру (атрибуты) и поведение (методы) родителя, но в то же время он может иметь новые элементы структуры и новые методы. UML допускает множественное наследование, когда сущность связана более чем с одной родительской сущностью.
    • Реализация – отношение между сущностью, определяющей спецификацию поведения (интерфейс) с сущностью, определяющей реализацию этого поведения (класс, компонент). Это отношение обычно используется при моделировании компонент и будет подробнее описано в последующих статьях.

    Диаграммы. В UML предусмотрены следующие диаграммы:

    • Диаграммы, описывающие поведение системы:
      • Диаграммы состояний (State diagrams),
      • Диаграммы деятельностей (Activity diagrams),
      • Диаграммы объектов (Object diagrams),
      • Диаграммы последовательностей (Sequence diagrams),
      • Диаграммы взаимодействия (Collaboration diagrams);
    • Диаграммы, описывающие физическую реализацию системы:
      • Диаграммы компонент (Component diagrams);
      • Диаграммы развертывания (Deployment diagrams).

    Представление управления моделью. Пакеты.

    Мы уже говорили о том, что для того чтобы модель была хорошо понимаемой человеком необходимо организовать ее иерархически, оставляя на каждом уровне иерархии небольшое число сущностей. UML включает средство организации иерархического представления модели – пакеты. Любая модель состоит из набора пакетов, которые могут содержать классы, варианты использования и прочие сущности и диаграммы. Пакет может включать другие пакеты, что позволяет создавать иерархии. В UML не предусмотрено отдельных диаграмм пакетов, но они могут присутствовать на других диаграммах. Пакет изображается в виде прямоугольника с закладкой.

    Что обеспечивает UML.

    • иерархическое описание сложной системы путем выделения пакетов;
    • формализацию функциональных требований к системе с помощью аппарата вариантов использования;
    • детализацию требований к системе путем построения диаграмм деятельностей и сценариев;
    • выделение классов данных и построение концептуальной модели данных в виде диаграмм классов;
    • выделение классов, описывающих пользовательский интерфейс, и создание схемы навигации экранов;
    • описание процессов взаимодействия объектов при выполнении системных функций;
    • описание поведения объектов в виде диаграмм деятельностей и состояний;
    • описание программных компонент и их взаимодействия через интерфейсы;
    • описание физической архитектуры системы.

    И последнее…

    Несмотря на всю привлекательность UML, его было бы затруднительно использовать при реальном моделировании ПС без инструментальных средств визуального моделирования. Такие средства позволяют оперативно представлять диаграммы на экране дисплея, документировать их, генерировать заготовки программных кодов на различных ОО языках программирования, создавать схемы баз данных. Большинство из них включают возможности реинжиниринга программных кодов – восстановления определенных проекций модели ПС путем автоматического анализа исходных кодов программ, что очень важно для обеспечения соответствия модели и кодов и при проектировании систем, наследующих функциональность систем-предшественников.