Синтаксис в информатике. Синтаксис языков программирования

Форма Бэкуса-Наура (БНФ)

Форма Бэкуса-Наура (БНФ) была впервые применена при описании Алгола-60. БНФ совпадает по сути с нотацией КС-грамматик, отличаясь лишь обозначениями. Предусмотрены следующие метасимволы:

<> - служат для выделения нетерминалов - понятий языка. | - «или». Разделяет альтернативные правые части правил. - «есть по определению». Заменяет стрелку, используемую при записи продукций КС-грамматик.

Терминальные символы записываются как есть, никаких специальных способов их выделения не предусмотрено. Вот пример определений на БНФ, взятый из спецификации Алгола-60 - «Модифицированного сообщения»:

<простое арифметическое выражение> ::= <терм> 1 Окак операции типа сложения> <терм> | <простое арифметическое выражение> <знак операции типа сложения> <терм> <знак операции типа сложения> ::= + | -

Как видим, для выражения повторений используется рекурсия, причем повсеместно - левая. БНФ использована Н. Виртом при описании языка Паскаль. Хотя в нотацию были добавлены метаскобки {и}, обозначающие повторение, применены они лишь в отдельных случаях, в то время как, например, грамматика выражений леворекурсивна.

Синтаксические диаграммы

Синтаксическая диаграмма - это направленный граф с одним входным ребром и одним выходным ребром и помеченными вершинами. Синтаксическая диаграмма задаёт Формальный язык. Цепочка пометок при вершинах на любом пути от входного ребра к выходному - это цепочка языка, задаваемого синтаксической диаграммой. Поэтому можно считать, что синтаксическая диаграмма - это одна из форм порождающей грамматики автоматных языков. Синтаксические диаграммы и конечные автоматы имеют тесную связь: любой автоматный язык задаётся синтаксической диаграммой и обратно, по любой синтаксической диаграмме можно построить конечный автомат(в общем случае недетерминированный), распознающий тот же язык, который задаёт диаграмма.

Построив по синтаксической диаграмме соответствующий распознающий конечный автомат, можно затем реализовать этот автомат либо аппаратно, либо программно.

Таким образом, синтаксические диаграммы могут служить не только для порождения, но и для распознавания автоматных языков. Диаграммы стали популярны после выхода книги К. Йенсен и Н. Вирта «Паскаль». Они использованы в первой ее части - «Руководстве» - компактном учебнике языка. На рис. 3.1 показана одна из имеющихся там диаграмм.

Расширенная форма Бэкуса-Наура

Как уже говорилось, отсутствие в нотации формальных грамматик (и БНФ) средств явного задания повторений создает ряд трудностей. Во-первых, определения оказываются сложными для понимания, недостаточно наглядными из-за обилия рекурсий. Во-вторых, возникают проблемы с тем, что грамматики, дающие подходя- щие семантические деревья, оказываются леворекурсивными. При описании Модулы-2 и Оберона Н. Вирт использовал расширенную Бэкуса-Наура форму (РБНФ). Главные модификации касаются введения скобок { и} для повторений, а [ и ] - для обозначения необязательного вхождения цепочек терминалов и нетерминалов в правые части правил. Соглашения относительно обозначений терминалов и нетерминалов также изменены, что не столь принципиально. В дальнейшем мы будем пользоваться именно РБНФ. Вот как она определяется в спецификации Оберона-2: Варианты разделяются знаком |. Квадратные скобки [ и ] означают необязательность записанного внутри них выражения, а фигурные скобки { и } означают его повторение (возможно, 0 раз). Нетерминальные символы начинаются с заглавной буквы (например, Оператор). Терминальные символы или начинаются малой буквой (например, идент), или записываются целиком заглавными буквами (например, begin), или заключаются в кавычки (например, ":="). К этому следует добавить, что в роли знака «есть по определению» в РБНФ используется «=», а каждое правило заканчивается точкой. Вот так может быть определен синтаксис идентификатора (имени) с помощью РБНФ:

Имя = Буква { Буква | Цифра }.

Являясь метаязыком, РБНФ должна быть пригодна для описания языков, имеющих практический интерес. В том числе с помощью РБНФ может быть определен и синтаксис самой РБНФ:

Синтаксис = { Правило }. Правило = Имя "=" Выражение Выражение = Вариант { "I" Вариант }. Вариант - Элемент { Элемент }. Элемент = Имя | Цепочка | "{" Выражение "}" | "[" Выражение "]" | "{" Выражение "}". Цепочка = """ { символ) """ | """{ символ } """.

В этих определениях не сделано различий между именами, обозначающими терминалы и нетерминалы, хотя сформулировать это на РБНФ было бы несложно. Различение имен вынесено за рамки синтаксиса и может быть специфицировано (и специфицируется) отдельно. Подобным же образом часто поступают при определении языков программирования.

Описания синтаксиса языков семейства Си

Си (англ. C) - стандартизированный процедурный язык программирования, разработанный в начале 1970-х годов сотрудниками Bell Labs Кеном Томпсоном и Денисом Ритчи как развитие языка Би. Си был создан для использования в операционной системе UNIX. С тех пор он был портирован на многие другие операционные системы и стал одним из самых используемых языков программирования. Си ценят за его эффективность; он является самым популярным языком для создания системного программного обеспечения. Его также часто используют для создания прикладных программ. Несмотря на то, что Си не разрабатывался для новичков, он активно используется для обучения программированию. В дальнейшем синтаксис языка Си стал основой для многих других языков. Для языка Си характерны лаконичность, современный набор конструкций управления потоком выполнения, структур данных и обширный набор операций.

В знаменитой книге Б. Кернигана и Д. Ритчи описание синтаксиса языка Си дано в нотации, которая эквивалентна БНФ, но использует другие соглашения об обозначениях терминалов и нетерминалов, альтернативных правых частей правил, необязательных конструкций. Нетерминалы записываются курсивом, терминалы - прямым шрифтом. Альтернативные части правил выписываются в столбик по одному в строке или помечаются словами «one of» (один из). Необязательные части сопровождаются подстрочным индексом «opt (от optional) - необязательный; «необ» - в некоторых русских пере- водах). Левая часть правила записывается отдельной строкой с отступом влево. Вот пример определений конструкций языка Си:

Составной оператор {список описанийopt список операторовopt } список операторов оператор оператор список операторов

Как видим, из-за отсутствия явного способа выражения повторений, определе- ния изобилуют рекурсией. Аналогичная нотация с минимальными изменениями использована для описа- ния синтаксиса языков-потомков Си: Си++, Ява, Си#. Вот выдержка из стандарта ЕСМА-334 на язык Си#:

Block: {Statement-listopt} statement-list: statement statement-list statement

Специального названия эта нотация, судя по всему, не имеет. И представляется, как минимум, странной. Она неудобна не только для чтения, но и для обработки на компьютере. Ее использование при описании новых языков трудно объяснить чем-либо, кроме дурно понятой необходимости следовать традициям.

Особенности языка Си

  1. Имеет простую языковую базу, из которой вынесены в библиотеки многие существенные возможности, вроде математических функций или функций управления файлами;
  2. Имеет ориентацию на процедурное программирование, обеспечивающую удобство применения структурного стиля программирования;
  3. Имеет систему типов, предохраняющую от бессмысленных операций;
  4. Использование препроцессора для, например, определения макросов и включения файлов с исходным кодом;
  5. Имеет непосредственный доступ к памяти компьютера через использование указателей;
  6. Имеет минимальное число ключевых слов;
  7. Передача параметров в функцию по значению, а не по ссылке (при этом передача по ссылке выполняется с помощью указателей);
  8. Указатели на функции и статические переменные;
  9. Имеет области действия имён;
  10. Записи - определяемые пользователем собирательные типы данных (структуры), которыми можно манипулировать как одним целым;

Пример программы "Hello world " на Си

main() { printf("Hello, World!\n"); } #include int main() { printf("Hello, World!\n"); return 0; }

Описания синтаксиса языка Ада

Ада(Ada) - язык программирования, созданный в 1979-1980 годах в результате проекта, предпринятого Министерством обороны США с целью разработать единый язык программирования для встраиваемых систем (то есть систем управления автоматизированными комплексами, работающими в реальном времени). Имелись в виду, прежде всего, бортовые системы управления военными объектами (кораблями, самолётами, танками, ракетами, снарядами и т. п.). Перед разработчиками не стояло задачи создать универсальный язык, поэтому решения, принятые авторами Ады, нужно воспринимать в контексте особенностей выбранной предметной области. Язык назван в честь Ады Лавлэйс.Исследования, выполненные в начале и середине 1970-х годов, показали, что если Пентагон будет использовать единый язык программирования для решения всех своих задач вместо примерно 450 языков и их диалектов, то появится возможность получить огромную экономию средств (около 24 млрд долл. за период с 1983-го по 1999 год).Язык Ада основан на идеях структурного программирования и обеспечивает поддержку разработки сложных многомодульных программ, высокую степень машино-независимости и переносимости.При проектировании языка в первую очередь внимание акцентировалось на надежности и эффективности - язык создавался специально для разработки больших программных комплексов реального времени для встроенных систем, к которым предъявляются высокие требования надежности.

Особенности

Ада - это структурный, модульный, объектно-ориентированный язык программирования, содержащий высокоуровневые средства программирования параллельных процессов. Синтаксис Ады унаследован от языков типа Algol или Паскаль, но расширен, а также сделан более строгим и логичным. Ада - язык со строгой типизацией, в нём исключена работа с объектами, не имеющими типов, а автоматические преобразования типов сведены к абсолютному минимуму.

Осбенности синтаксиса

  1. Программы модульные, механизм контроля импорта-экспорта описаний между модулями включает две разные директивы: одну для подключения другого модуля (with), другую - для импорта его описаний (use). Также существует возможность переименовать модуль при импорте (rename) - этот вариант позволяет использовать для обозначения пакета более удобные программисту идентификаторы.
  2. Пакеты (один из типов модулей) могут содержать заголовок и личную часть - то, что содержится в ней, не экспортируется и другим модулям недоступно.
  3. Поддерживается механизм обобщённых (настраиваемых) модулей: пакетов, процедур и функций, позволяющих описывать обобщённые алгоритмы обработки данных без указания конкретного типа.
  4. Развитая система типов, как встроенных, так и порождаемых программистом. Есть множество способов создания новых типов, язык поддерживает два разных понятия: «подтип» и «производный тип». Переменные типа и подтипа совместимы, переменные типа и его производного типа - нет.
  5. Развитые средства обращения к процедурам и функциям: поддерживаются входные и выходные параметры, передача фактических параметров в произвольном порядке с указанием имён формальных, параметры со значениями по умолчанию.
  6. Поддерживается переопределение процедур, функций и операторов - создание нескольких вариантов процедуры, функции или оператора с одним и тем же именем, но различными сигнатурами (типами и количеством параметров).
  7. Встроенные в язык конструкции поддержки параллельного программирования: поддерживаются понятия «задача» (параллельно выполняемый фрагмент программы), «вход задачи» (средство синхронизации и коммуникации параллельно выполняющихся задач), поддерживается механизм «рандеву» (протокол взаимодействия параллельно выполняемых задач через вход одной из них), имеется оператор выбора SELECT для организации условного межпотокового взаимодействия (выбора параллельной задачи, с которой следует взаимодействовать, в зависимости от готовности к рандеву и некоторых других условий).

Контекстно-свободные грамматики языков Aда-83 и Ада-95 определены с помощью варианта БНФ, в который добавлены обозначения повторений и необязательных частей. Названия нетерминалов записываются обычным шрифтом с использованием знака подчеркивания, если название составное, а зарезервированные слова - жирным шрифтом. Поскольку ни квадратные, ни фигурные скобки в Аде не используются, как не используется и знак «|» (все это метасимволы), никакого специального обозначения для терминалов не предусмотрено. Определение синтаксиса оператора if, взятое из стандарта Ада-95, выглядит так:

If_statement::= if condition then sequence_of_statements {elsif condition then sequence_of_statements} end if;

Интересная и полезная особенность: синтаксические правила структурных конструкций представлены в виде, соответствующем их рекомендованному форматированию в программах (разделение на строки, отступы).

Для удовлетворения требованиям надёжности язык построен таким образом, чтобы как можно большее количество ошибок обнаруживалось на этапе компиляции. Кроме того, одним из требований при разработке языка была максимально лёгкая читаемость текстов программ, даже в ущерб лёгкости написания. Результатом такого подхода стал несколько «тяжеловесный» синтаксис и множество ограничений, отсутствующих в наиболее распространённых промышленных языках (С и C++) и часто воспринимаемых профессиональными программистами как избыточные, например, та же строгая типизация. Это привело к формированию представления об Аде как о сложном, малопонятном и неудобном в использовании языке.

Пример программы "Hellow world" на Аде

with Ada.Text_IO; procedure Hello is use Ada.Text_IO; begin Put_Line("Hello, world!"); end Hello;

Определение синтаксиса Кобола и ПЛ/1

Кобол (COBOL, COmmon Business Oriented Language ), язык программирования третьего поколения (первая версия в 1959), предназначенный, в первую очередь, для разработки бизнес-приложений.Разработчиком первого единого стандарта Кобола являлась Грейс Хоппер (бабушка Кобола). К 1997 году активно использовалось около 240 миллиардов строк кода на Коболе. Около 90 % финансовых транзакций в мире обрабатывается кодом на Коболе, и 75 % коммерческой обработки данных написано на Коболе. Общая стоимость используемого в настоящее время коболовского кода оценивается в 2 триллиона долларов США. До сих пор ежегодно пишутся миллиарды новых строк кода на Коболе.

Своеобразная система обозначений, являющаяся примером ранних нотаций, была применена при описании языков Кобол и ПЛ/1. Вот пример - определение формата глагола MOVE в Коболе:


Служебные слова подчеркнуты, квадратные скобки обозначают необязательные части конструкции, а фигурные - выбор из нескольких альтернатив, которые записываются в столбик. Повторение, как можно видеть, обозначено многоточием. Такого же типа формулы использовались при определении языков управления базами данных.

Особенности языка Кобол

  1. Грамоздкость, многословность
  2. Хооршие, современные средства для работы со структурами данных и файлами, что обеспечило ему долгую жизнь в бизнес-приложениях(по крайней мере, в США).
  3. Обеспечивает наглядную и достаточно компактную запись алгоритмов в форме, независимой от конкретных машин, предназначенных для решения задач.
  4. Содержит большое колличество команд,которые представляют собой сложные комплексы типовых подпрограмм, обеспечивающих решение планово-экономических задач.

Пример программы "Hello world " на Коболе

IDENTIFICATION DIVISION. PROGRAM-ID. HELLO-WORLD. * ENVIRONMENT DIVISION. * DATA DIVISION. * PROCEDURE DIVISION. PARA-1. DISPLAY "Hello, world.". * EXIT PROGRAM.

ПЛ/1 -(PL/I, Programming Language I - «Язык программирования номер один») - разработанный в 1964 году язык программирования, созданный для научных, инженерных и бизнес-ориентированных вычислений. Он содержит такой широкий набор синтаксических конструкций и встроенных функций, что, вероятно, не существует ни одного компилятора, поддерживающего все возможности языка ПЛ/1. ПЛ/1 поддерживает рекурсию и структурное программирование, и его основная область применения - обработка данных

Основные свойства ПЛ/1

  1. Свободный синтаксис
  2. Ключевые слова и идентификаторы нечувствительны к регистру
  3. По умолчанию (в классических мэйнфреймовских версиях - всегда) передача параметров по ссылке
  4. Поддержка сложных структур с объединениями (в терминологии языка Паскаль - записи с вариантами)
  5. Чрезвычайно развитая система встроенных типов данных, при этом возможность неявных преобразований между большинством из них
  6. Несколько видов динамического выделения памяти
  7. Очень обобщенные операторы со многими вариантами синтаксиса
  8. Строго определённая семантика управляющих конструкций
  9. Операции с массивами
  10. Развитый механизм исключительных состояний
  11. Поддержка на уровне языка мультизадачности и асинхронного ввода-вывода
  12. Поддержка на уровне языка сложных методов доступа для ввода-вывода
  13. Очень развитый препроцессор, фактически сам являющийся подмножеством ПЛ/1

Пример программы "Hello world" на ПЛ/1

Test: procedure options(main); declare My_String char(20) varying initialize("Hello, world!"); put skip list(My_String); end Test;

Алфавит языка

Первоначальный алфавит ПЛ/1 включал 60 символов:

$ @ # A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 = + - * / () , . " % ; : ¬ & | > < _ ? пробел

Была предусмотрена возможность работы и с более ограниченным 48-символьным алфавитом, в который не входили:

@ # ; : ¬ & | > < _ ? -

Вместо отсутствующих символов использовались дополнительные ключевые слова. В современных версиях языка разрешено использовать также строчные латинские буквы (ключевые слова можно писать и заглавными, и строчными буквами). Вместо символа ¬ (отрицание), отсутствующего в переносимом наборе символов, используют ~.

Литература

  1. Свердлов С.З. Языки программирования и методы трансляции: Учебное пособие. - СПб.: Питер, 2007. - 638 с.: ил.

Синтаксис проверяется на ранних стадиях трансляции . В интерпретируемых языках программирования проверка синтаксиса производится или в процессе интерпретации (выполнения), или в процессе предварительной компиляции в промежуточный код. Кроме того, синтаксис может проверяться непосредственно при редактировании исходных текстов программ при использовании IDE .

Синтаксис записи функции

Синтаксис записи функции - формальные правила, которым должна удовлетворять запись определения или вызова функции ; форма записи функции. Если синтаксис функции будет неверен, компилятор вернет ошибку, и программа не будет собрана, пока ошибка не будет исправлена.

К синтаксическим ошибкам записи функции, например, относятся:

  • написание названия функции при её вызове, не соответствующее грамматике языка (неверный регистр символов для регистрострогих языков);
  • использование при вызове или определении функции литералов, не соответствующих грамматике языка (другие виды скобок, разделитель аргументов);
  • отсутствие возвращаемого функцией типа данных (для тех языков, для которых это определено грамматикой).

программный синтаксис комбинаторный логика

В лекции рассматриваются вопросы, относящиеся к понятийному аппарату, истории развития и выразительным возможностям синтаксического представления формальных теорий и языков программирования .

Формализуем основные конструкции языка программирования SML посредством форм Бэкуса-Наура или БНФ (история их создания изложена во вступительной лекции).

Неформально определим синтаксис (языка программирования или математической теории) как форму конструкций (программы или теории) и способов их комбинирования. Более точное определение синтаксиса будет сформулировано далее в ходе лекции.

Определим понятие синтаксиса более строго.

Под синтаксисом понимают раздел описания формального математического языка или языка программирования, исследующий вид, форму и структуру конструкций (без учета их значения или практической применимости).

Забегая вперед, заметим, что значение конструкций языка программирования описывается и исследуется семантикой (о ней речь пойдет в следующей лекции), а вопросы и ценность практической применимости - прагматикой.

Основной задачей синтаксиса является определение формы и вида допустимых языковых конструкций. Эту задачу можно решить путем перечисления описаний всех языковых конструкций. Одним из механизмов такого описания является уже упомянутая нами нотация БНФ

Мы будем рассматривать параллельно БНФ-формализации синтаксиса ламбда-исчисления и языка программирования SML. В последнем случае мы ограничимся базовым набором конструкций языка, подчеркнув такие существенные возможности, как кортежи (tuples) и let-выражения.

Для формирования правильного понимания роли и места синтаксиса в исследовании языков программирования рассмотрим обобщенную схему трансляции исходного текста программы (написанной, например, на языке программирования SML) в машинный код.

В ходе трансляции программы, прежде всего, выполняется так называемая процедура лексического анализа, которая включает в себя выделение в тексте программы элементарных конструкций языка, или, иначе, лексем (в частности, имен переменных или идентификаторов, специальных или ключевых слов, значений констант, переменных и др.).

По завершении лексического анализа выполняется так называемая процедура синтаксического разбора текста программы, которая представляет собой проверку корректности синтаксиса текста, написанного на языке программирования. Эта процедура, возможно, включает выполнение проверки корректности типизации в той или иной форме.

Наконец, в случае, если все конструкции языка, присутствующие в тексте программы, являются синтаксически корректными, а также не выявлено несоответствий типов, запрещенных с точки зрения анализатора корректности типизации, производится преобразование текста программы в промежуточный код (ассемблер, код той или иной абстрактной машины) или собственно машинный код.

Рассмотрим синтаксис языка программирования SML в сравнении с синтаксисом ламбда-исчисления.

Для большей наглядности и сопоставимости формализаций синтаксиса обоих языков (языка формальной математической теории и языка программирования) будем использовать единую нотацию, а именно, БНФ.

Прежде всего, необходимо договориться об обозначениях.

Рассмотрим традиционные обозначения БНФ и поясним смысл каждого из них.

Фактически БНФ представляют собой определения одних понятий через другие. При этом понятия заключаются в угловые скобки, и используется ряд специализированных символов и соглашений, суть которых поясняется далее.

Определяющий символ "::=" отделяет определяемую конструкцию от составляющих ее ранее определенных базовых конструкций.

Определяемая конструкция записывается слева от "::=" в угловых скобках "<" и ">".

Альтернативы (возможные варианты) конструкций перечисляются по вертикали.

Цитирование (подобно тому, как мы цитировали специальные символы, заключая их в двойные кавычки) не имеет обозначения.

Проиллюстрируем формализацию синтаксиса посредством нотации БНФ, рассмотрев в качестве примера формальной системы хорошо знакомое нам по предыдущим лекциям ламбда-исчисление.

<выражение> ::= <константа> | <переменная> |

(<выражение> <выражение>) |

л <переменная> . <выражение>

Поясним смысл приведенных обозначений.

В данном примере определяется понятие выражения, синтаксическое представление которого может быть выражено в виде одной из следующих альтернатив:

  • 1. константы;
  • 2. переменной;
  • 3. двух выражений, заключенных в круглые скобки, т.е. знакомой нам операции аппликации ламбда-выражений;
  • 4. символа л, за которым следует переменная, точка и выражение, т.е. знакомой нам операции абстракции.

Оказывается, что синтаксис языка программирования SML имеет ряд очевидных аналогий с синтаксисом ламбда-исчисления. Эти аналогии являются неизбежными как в силу функциональной природы рассматриваемого языка программирования, так и на том основании, что язык SML разрабатывался как средство доказательства теорем, а, значит, его синтаксис (а, забегая вперед, заметим, что и семантика) должен быть прозрачен математически.

Для иллюстрации перечисленных выше тезисов рассмотрим важнейшие синтаксические категории языка программирования SML.

Описанием будем в дальнейшем называть запись, связывающую выражение языка программирования с именем, обозначающим его в программе (идентификатором).

Под термином "зарезервированное" (или, иначе, служебное)слово будем иметь в виду конструкцию языка, однозначно интерпретируемую в качестве инструкции языка программирования (например, "if", "then", "let"). Напомним, что в данной нотации цитирование производится без кавычек или других символов-ограничителей.

Комментарием назовем произвольный поясняющий текст к программе, который, согласно синтаксису языка SML, положено заключать в ограничители вида "(*" и "*)".

В частности, рассмотрим структуру основных синтаксически допустимых типов выражений языка.

<выражение> ::= <идентификатор> | <литерал> |

<выражение> <выражение> |

<выражение> <идентификатор> <выражение>

Как видно из БНФ-формализации, синтаксически корректным выражением в языке программирования SML считается:

  • 1. идентификатор (т.е. имя переменной, константы, функции или типа, обычно представляемой в виде алфавитно-цифровой последовательности ограниченной длины и начинающейся с буквенного символа) или
  • 2. литерал (литералы будут рассмотрены далее в ходе лекции) или
  • 3. последовательность из двух выражений или
  • 4. последовательность из двух выражений, соединенных идентификатором.

Продолжим обсуждение выражений.

В дополнение к перечисленным альтернативам, синтаксически допустимыми выражениями языка программирования SML, также являются:

if <выражение> then <выражение>

else <выражение> |

(<выражение> ... <выражение>) |

let <описание> in <выражение> end |

  • 1. три выражения, соединенные зарезервированными словами if ("если"), then ("тогда") и else ("в противном случае"), называемые условным выражением и фактически представляющие собой предикатную функцию, которая реализует выполнение второго выражения в случае истинности первого и выполнение третьего в противном случае;
  • 2. конечную последовательность выражений, заключенную в круглые скобки (или так называемый кортеж) и применяемую для структуризации данных;
  • 3. описание и выражение, соединенные зарезервированными словами let ("положим"), in ("в") и end ("конец"), которые определяют операцию подстановки описания в выражение с учетом всевозможных вхождений в него указанного фрагмента описания;
  • 4. выражение, заключенное в круглые скобки (как мы уже знаем, в ламбда-исчислении и комбинаторной логике эту операцию можно производить без ограничений) и используемое для явного указания приоритета операции.

Продолжим обсуждение синтаксических категорий языка программирования SML.

Перейдем к рассмотрению структуры синтаксически допустимых видов описаний объектов языка.

Приведем соответствующую формализацию в терминах БНФ.

<описание> ::=

val < идентификатор > = < выражение > |

fun < идентификатор > < идентификатор > =

< выражение > |

local < описание > in <описание> end

Синтаксически допустимыми описаниями языка программирования SML, как следует из представленной БНФ, являются:

  • 1. идентификатор и выражение, соединенные зарезервированными словами val и "=", которые обозначают связывание идентификатора (переменной, константы или другого синтаксически допустимого объекта языка программирования) с тем или иным выражением;
  • 2. три идентификатора и выражение, соединенные зарезервированными словами fun и "=", которые обозначают связывание функции (обозначенной первым идентификатором) с параметром (обозначенным вторым идентификатором) с выражением, определяющим порядок вычисления значения;
  • 3. два описания, соединенные зарезервированными словами local, in и end, которые обозначают локальное определение первого описания в контексте второго.

Продолжим обсуждение синтаксических категорий языка программирования SML.

Перейдем к рассмотрению структуры синтаксически допустимых описаний типов объектов языка.

Приведем соответствующую формализацию в терминах БНФ.

<тип> ::= int | bool |

<тип> * ... * <тип> |

<тип> -> <тип>

Как следует из представленной БНФ, синтаксически допустимыми типами языка программирования SML являются:

  • 1. целочисленные величины, обозначаемые зарезервированным словом int;
  • 2. логические значения, обозначаемые зарезервированным словом bool;
  • 3. кортежи - упорядоченные n-ки элементов определенных типов;
  • 4. функции - упорядоченные n-ки элементов определенных типов, соединенных зарезервированными символами "->".

Рассмотрим следующий пример, иллюстрирующий приписывание типов в языке SML. Константа типа кортеж вида (0,false,1,true) имеет тип (int*bool*int*bool).

Заметим, что варианты типов (1) и (2) являются элементарными, тогда как (3) и (4) представляют собой производные типы с явно указанной (или выводимой) структурой, откуда и происходит название "структурированный тип".

В ходе лекции нами уже упоминалось о такой синтаксической категории как литералы, или о базовых типах SML, состоящих из определенных последовательностей символов.

Рассмотрим подробнее синтаксические особенности основных видов литералов.

Приведем соответствующую формализацию в терминах БНФ.

<литерал> ::= <литерал целого типа> |

<литерал строкового типа> |

<литерал вещественного типа>

Как следует из представленной БНФ, синтаксически допустимыми типами литералов в языке программирования SML являются следующие:

  • 1. целочисленные литералы, имеющие тип int и лежащие в диапазоне от -230 до +230 (последнее обстоятельство связано с особенностями машинного представления данных);
  • 2. строковые литералы, имеющие тип string и представляющие собой алфавитно-цифровые последовательности символов в коде формата ASCII;
  • 3. вещественные литералы, имеющие базовый тип real, обобщенную форму вида M x 10E, где M - мантисса в диапазоне от -1 до +1, а E - порядок в соответствующем диапазоне.

Заметим, что значение (т.е. семантика) литералов в полной мере определяется их лексическим (а, значит, и синтаксическим) представлением.

Продолжим обсуждение синтаксических категорий языка программирования SML.

Перейдем к рассмотрению фундаментальной с точки зрения формализации языков функционального программирования - ламбда-исчисления - операции аппликации функций.

<выражение> <выражение>

Как следует из представленной БНФ, синтаксически допустимая конструкция языка программирования SML, описывающая операцию аппликации, весьма точно соответствует описанию операции аппликации в ламбда-исчислении.

Проиллюстрируем аппликацию функции к аргументу в языке программирования SML следующим примером.

Рассмотрим функцию succ, которая задается определением

fun succ n = n+1;

и осуществляет прибавление единицы к (целочисленному) аргументу.

Для рассматриваемой функции succ синтаксически корректная аппликация может иметь вид succ 2 и вычисляться в ходе выполнения программы в значение 3.

Продолжим обсуждение синтаксических категорий языка программирования SML.

Перейдем к рассмотрению синтаксически допустимых конструкций языка программирования SML, называемых условными выражениями.

Приведем соответствующую формализацию в терминах БНФ:

if <выражение> then <выражение> else <выражение>;

Как видно из БНФ-формализации, синтаксически корректное условное выражение состоит из трех подвыражений, соединенных зарезервированными словами if, then и else, уже упоминавшихся нами в ходе лекции.

Добавим к сказанному ряд необходимых замечаний. Во-первых, результатом вычисления первого выражения должно быть логическое значение. Во-вторых, типы второго и третьего выражений должны совпадать. Наконец, часть условного выражения, начинающаяся с else, не является обязательной.

Заметим также, что функции сравнения встроены в язык SML и имеют вид: "=" (равно), "<" (меньше), ">" (больше), "<=" (меньше или равно), ">=" (больше или равно), "<>" (не равно). Результатом вычисления любой из этих функций является логическое значение.

Проиллюстрируем синтаксис условного выражения следующим примером на языке SML:

if n>=10 then 1 else 0;

Заметим, что приведенное выражение может использоваться для анализа параметра функции, вычисляющей, например, количество разрядов десятичного числа.

Продолжим обсуждение основных синтаксических категорий языка программирования SML.

Рассмотрим структуру синтаксически допустимых конструкций, известных под названием let-выражений.

Приведем соответствующую формализацию в терминах БНФ:

let <описание> in <выражение> end;

Как видно из БНФ-формализации, синтаксически корректное let-выражение состоит из описания и выражения, соединенных зарезервированными словами let, in и end.

Как можно заключить из синтаксиса, let-выражение представляет собой ни что иное, как подстановку значения в ламбда-абстракцию. Let-выражения используются в языке программирования SML для связывания значений и оптимизации вычислений, в частности, для обеспечения многократного вычисления повторяющихся фрагментов программы.

Проиллюстрируем синтаксис let-выражений примерами из языка программирования SML.

Рассмотрим следующие let-выражения:

let val n=2 in n+1 end;

let k=9876*8765 in (k-1, k, k+1) end;

Как можно заметить, первое выражение представляет собой ни что иное, как подстановку, которую можно формализовать ламбда-термом вида (лx.x + 1) 2. Второе выражение позволяет свести многократное вычисление громоздкой операции (умножения) к однократному.

В ходе лекции неоднократно упоминалось понятие кортежа.

Рассмотрим подробнее этот весьма важный (в особенности при реализации функций) вид синтаксических конструкций языка программирования SML.

Приведем формализацию синтаксически допустимого представления кортежа в терминах БНФ:

(<выражение>, ..., <выражение>)

Исходя из вида БНФ-формализации, уточним понятие кортежа. Кортежем называется группа, состоящая, по меньшей мере, из двух выражений (возможно, имеющих разные типы), объединенная в обособленную совокупность.

Заметим, что кортежи используются в SML для реализации многоместных (имеющих более одного аргумента) функций, а более широко в теории и практике программирования - в реляционных базах данных (в которых данные представляются в виде таблиц), поскольку кортеж представляет собой, по сути, строку такой таблицы.

Проиллюстрируем синтаксис конструкции кортежа примерами из языка программирования SML:

Пример 1: (1, 2*1, 2*2*1)

Пример 2: (1, true, 0, false)

Заметим, что в случае единственного выражения кортеж вырождается в выражение в скобках. Естественно, что любое SML-выражение можно заключить в скобки, например для явного указания приоритета аппликаций, арифметических и логических операций.

Полученный в ходе лекции опыт рассмотрения основных видов синтаксических конструкций языка программирования SML позволяет перейти к формальному синтаксису таких фундаментальных языковых конструкций как описания переменных и функций.

Рассмотрим формализации синтаксически корректных описаний переменных и функций в терминах БНФ:

<описание> ::=

val <идентификатор> = <выражение>

<описание> ::=

fun <идентификатор> <идентификатор> =

<выражение>

Первое определение представляет собой описание переменной, второе - функции. При этом оба определения имеют сходную структуру.

Проиллюстрируем формальные описания переменных и функций следующими примерами:

Пример 1. val x=2;

Пример 2. fun fact n =

if n<2 then 1

else n * fact (n - 1);

Пример 3. fun f (x,y) = x*x + y*y;

Первый из приведенных примеров представляет собой описание (целочисленной) переменной x, второй - рекурсивной (самоприменимой) функции fact вычисления факториала (произведения натуральных чисел от 1 до n), а третий - двухместной функции f, вычисляющей сумму квадратов аргументов.

Заметим в заключение, что именно при реализации последней функции используются кортежи (поскольку синтаксис SML в "чистом" виде, как следует из БНФ, допускает применение только одноместных функций).

Итак, в данной лекции были рассмотрены основные виды синтаксических конструкций языка программирования SML. По итогам обсуждения можно сделать следующие выводы:

  • · синтаксис языков функционального программирования достаточно близок к синтаксису формальных теорий, на которых они основаны (в частности, это справедливо для ламбда-исчисления и языка SML);
  • · БНФ являются актуальной и адекватной формализацией синтаксиса языка;
  • · язык программирования SML, в отличие от ранних языков функционального программирования, имеет ряд расширенных конструкций (кортежи, let-выражения и др.).

Алфавитом языка называется совокупность символов, используемых в языке. Язык C различают, в отличие от многих других языков прграммирования, прописные и строчные буквы.

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами. Алгоритмический язык (как и любой другой язык), образуют три его составляющие: алфавит, синтаксис и семантика.
Алфавит – фиксированный для данного языка набор символов (букв, цифр, специальных знаков и т.д.), которые могут быть использованы при написании программы.
Синтаксис - правила построения из символов алфавита специальных конструкций, с помощью которых составляется алгоритм.

Семантика - система правил толкования конструкций языка. Таким образом, программа составляется с помощью соединения символов алфавита в соответствии с синтаксическими правилами и с учетом правил семантики.

12) Алфавит языка С++. Служебные слова языка С++.

Прописные и строчные буквы латинского алфавита;

2. Цифры от 0 до 9;

3. Спецзнаки (-, /, ., , (), +, -) и др.;

4. В комментариях, строках и символьных константах могут использоваться русские буквы.

Комментарий формируется как последовательность знаков ограниченных слева символами /*, а справа */. Комментарий может отделяться слева символом // (в этом случае комментарий может быть записан только в одну строку).

/* Курсивом я пишу комментарий к программе в Си он может быть написан в несколько строк */

// или в одну строку, после двух черточек. Курсив взят условно, для лучшей усвояемости.

// Курсив взят условно, для лучшей усвояемости.

Идентификатор – это последовательность букв, цифр и символов подчеркивания, которые начинаются с буквы или символа подчеркивания.

Прописные и строчные буквы различаются идентификаторами, обозначающими служебные слова, константы, строковые константы, знаки операций, знаки пунктуации.



Служебные слова – это зарезервированные в языке идентификаторы, которые нельзя выбирать в качестве имен переменных и констант.

Примеры служебных слов:

Алфавит C++ включает:

  • прописные и строчные латинские буквы и знак подчеркивания;
  • арабские цифры от 0 до 9;
  • специальные знаки:? { } , ¦ () + - / % * . \ ‘ : ? < = > ! & # ~ - ; ^
  • пробельные символы: пробел, символы табуляции, символы перехода на новую строку.

Из символов алфавита формируются лексемы языка:

  • идентификаторы;
  • ключевые (зарезервированные) слова;
  • знаки операций;
  • константы;
  • разделители (скобки, точка, запятая, пробельные символы).

Границы лексем определяются другими лексемами, такими, как разделители или знаки операций.

13) Правила создания идентификаторов. Структура программы на языке С++.

Идентификатор - это имя программного объекта. В идентификаторе могут использоваться латинские буквы, цифры и знак подчеркивания. Прописные и строчные буквы различаются, например, sysop, SySoP и SYSOP - три различных имени. Первым символом идентификатора может быть буква или знак подчеркивания, но не цифра. Пробелы внутри имен не допускаются.

  1. Первым символом идентификатора C++ может быть только буква.
  2. Следующими символами идентификатора могут быть буквы, буквы-цифры и буквы-подчерки.
  3. Длина идентификатора неограниченна (фактически же длина зависит от реализации системы программирования).

Вопреки правилам словообразования в C++ существуют ограничения относительно использования подчерка в качестве самой первой буквы в идентификаторах. Особенности реализации делают нежелательными для использования идентификаторы, которые начинаются с этого символа.

Длина идентификатора по стандарту не ограничена, но некоторые компиляторы и компоновщики налагают на нее ограничения. Идентификатор создается на этапе объявления переменной, функции, типа и т. п., после этого его можно использовать в последующих операторах программы. При выборе идентификатора необходимо иметь в виду следующее:

  • идентификатор не должен совпадать с ключевыми словами и именами используемых стандартных объектов языка;
  • не рекомендуется начинать идентификаторы с символа подчеркивания, поскольку они могут совпасть с именами системных функций или переменных, и, кроме того, это снижает мобильность программы;
  • на идентификаторы, используемые для определения внешних переменных, налагаются ограничения компоновщика (использование различных компоновщиков или версий компоновщика накладывает разные требования на имена внешних переменных).

Константы, переменные, их типы.

Константами называют неизменяемые величины. Различаются целые, вещественные, символьные и строковые константы. Компилятор, выделив константу в качестве лексемы, относит ее к одному из типов по ее внешнему виду (формат константы можно указать самостоятельно).

Целые константы.

Согласно правилам языка Си, число без десятичной точки и без показателя степени рассматривается как целое. Поэтому компилятор по записи константы определяет, целая она или вещественная. Если нужно ввести константу типа long, то нужно указать признак L или l в конце числа. Если при записи константы целое начинается с цифры 0, то эта константа интерпретируется как восьмеричное число, если же целое начинается с символа 0x или 0X - как шестнадцатеричное число.

Переменная - это «ячейка» оперативной памяти компьютера, в которой может храниться какая-либо информация. В программировании переменная, как и в математике, может иметь название, состоящее из одной латинской буквы, но также может состоять из нескольких символов, целого слова или нескольких слов.

Типы данных

В языке С++ все переменные имеют определенный тип данных. Например, переменная, имеющая целочисленный тип не может содержать ничего кроме целых чисел, а переменная с плавающей точкой - только дробные числа.

Тип данных присваивается переменной при ее объявлении или инициализации. Ниже приведены основные типы данных языка C++, которые нам понадобятся.

Основные типы данных в C++

  • int - целочисленный тип данных.
  • float - тип данных с плавающей запятой.
  • double - тип данных с плавающей запятой двойной точности.
  • char - символьный тип данных.
  • bool - логический тип данных.

Объявление переменной

Объявление переменной в C++ происходит таким образом: сначала указывается тип данных для этой переменной а затем название этой переменной.

15) Операции, операнды, выражения в языке С++.

Операнд - это константа, литерал, идентификатор, вызов функции, индексное выражение, выражение выбора элемента или более сложное выражение, сформированное комбинацией операндов, знаков операций и круглых скобок. Любой операнд, который имеет константное значение, называется константным выражением. Каждый операнд имеет тип.

Если в качестве операнда используется константа, то ему соответствует значение и тип представляющей его константы. Целая константа может быть типа int, long, unsigned int, unsigned long, в зависимости от ее значения и от формы записи. Символьная константа имеет тип int. Константа с плавающей точкой всегда имеет тип double.

Операнд - это константа, переменная, элемент массива или значение, возвращаемое функцией. Операнд - это константа, литерал, идентификатор, вызов функции, индексное выражение, выражение выбора элемента или более сложное выражение, сформированное комбинацией операндов, знаков операций и круглых скобок.

Операция - это действие, производимое над операндами.

Выражение - последовательность операндов и знаков операций - запись в программе, вычисленное значение которой характеризуется типом данных.

Над объектами в языке Си могут выполняться различные операции:

  • операции присваивания;
  • операции отношения;
  • арифметические;
  • логические;
  • cдвиговые операции.

Результатом выполнения операции является число.

Операция присваивания

Операция присваивания обозначается символом = и выполняется в 2 этапа:

  • вычисляется выражение в правой части;
  • результат присваивается операнду, стоящему в левой части:

объект = выражение;

Пример:

int a = 4; // переменной a присваивается значение 4
int b;
b = a + 2; // переменной b присваивается значение 6,

// вычисленное в правой части

Операции отношения

Основные операции отношения:

  • == эквивалентно - проверка на равенство;
  • != не равно - проверка на неравенство;
  • < меньше;
  • > больше;
  • <= меньше или равно;
  • >= больше или равно.

Арифметические операции

Основные бинарные операции, расположенные в порядке уменьшения приоритета:

  • умножение * ;
  • деление / ;
  • сложение + ;
  • вычитание - ;
  • остаток от целочисленного деления % .

Основные унарные операции:

  • инкрементирование (увеличение на 1) ++ ;
  • декрементирование (уменьшение на 1) -- ;
  • изменение знака - .

Основные условные логические операции:

  • && - И (бинарная) - требуется одновременное выполнение всех операций отношения;
  • || - ИЛИ (бинарная) - требуется выполнение хотя бы одной операции отношения;
  • ! - НЕ (унарная) - требуется невыполнение операции отношения.

Основными элементами любого языка программирования являются его алфавит, синтаксис и семантика.

Алфавит – совокупность символов, отображаемых на устройствах печати и экранах и/или вводимых с клавиатуры терминала. Обычно это набор символов Latin-1 с исключением управляющих символов. Иногда в это множество включаются неотображаемые символы с указанием правил их записи (комбинирование в лексемы).

Лексика – совокупность правил образования цепочек символов (лексем), образующих иден­тификаторы (переменные и метки), операторы, операции и другие лексические компоненты языка. Сюда же включаются зарезервированные (запрещенные, ключевые) слова языка программирования, предназначенные для обозначения операторов, встроенных функций и пр. Иногда эквивалентные лексемы, в зависимости от языка программирования, могут обозначаться как одним символом алфавита, так и несколькими. Например, операция присваивания значения в языке Си обозначается как «=», а в языке Паскаль – «:=». Операторные скобки в языке Си задаются символами «{» и «}», а в языке Паскаль – begin и end. Граница между лексикой и алфавитом, таким образом, является весьма условной, тем более что компилятор обычно на фазе лексического анализа заменяет распознанные ключевые слова внутренним кодом (например, begin – 512, end – 513) и в дальнейшем рассматривает их как отдельные символы.

Синтаксис – совокупность правил образования языковых конструкций, или предложений языка программирования – блоков, процедур, составных операторов, условных операторов, опера­торов цикла и пр. Особенностью синтаксиса является принцип вложенности (рекурсивность) правил построения конструкций. Это значит, что элемент синтаксиса языка в своем определении прямо или косвенно в одной из его частей содержит сам себя. Например, в определении оператора цикла телом цикла является оператор, частным случаем которого является все тот же оператор цикла.

Необходимо строгое соблюдение правил правописания (синтаксиса) программы. В частности, в Паскале однозначно определено назначение знаков пунктуации. Точка с запятой (;) ставится в конце заголовка программы, в конце раздела описания переменных, после каждого оператора. Перед словом End точку с запятой можно не ставить. Запятая (,) является разделителем элементов во всевозможных списках: списке переменных в разделе описания, списке вводимых и выводимых величин.

Строгий синтаксис в языке программирования необходим прежде всего для транслятора. Транслятор – это программа, которая исполняется формально. Если, допустим, разделителем в списке переменных должна быть запятая, то любой другой знак будет восприниматься как ошибка. Если точка с запятой является разделителем операторов, то транслятор в качестве оператора воспринимает всю часть текста программы от одной точки с запятой до другой. Если вы забыли поставить этот знак между какими-то двумя операторами, то транслятор будет принимать их за один, что неизбежно приведет к ошибке.

Основное назначение синтаксических правил – придать однозначный смысл языковым конструкциям. Если какая-то конструкция может трактоваться двусмысленно, значит, в ней обязательно содержится ошибка. Лучше не полагаться на интуицию, а выучить правила языка.

Для описания синтаксиса языка программирования тоже нужен какой-то язык. В этом случае речь идет о метаязыке («надъязыке»), предназначенном для описания других языков. Наиболее распространенными метаязыками в литературе по программированию являются металингвистические формулы Бекуса – Наура (язык БНФ) и синтаксические диаграммы. Язык синтаксических диаграмм более нагляден, легче воспринимается.

В БНФ всякое синтаксическое понятие описывается в виде формулы, состоящей из правой и левой части, соединенных знаком::=, смысл которого эквивалентен словам «по определению есть». Слева от знака::= записывается имя определяемого понятия (метапеременная), которое заключается в угловые скобки < >, а в правой части записывается формула или диаграмма, определяющая все множество значений, которые может принимать метапеременная.

Синтаксис языка описывается путем последовательного усложнения понятий: сначала опреде­ляются простейшие (базовые), затем все более сложные, включающие в себя предыдущие понятия в качестве составляющих.

В такой последовательности, очевидно, конечным определяемым понятием должно быть понятие программы.

В записях метаформул приняты определенные соглашения. Например, формула БНФ, опре­деляющая понятие «двоичная цифра», выглядит следующим образом:

<двоичная цифра>::=0|1

Значок «|» эквивалентен слову «или».

В диаграммах стрелки указывают на последовательность расположения элементов синтак­сической конструкции; кружками обводятся символы, присутствующие в конструкции.

Понятие «двоичный код» как непустую последовательность двоичных цифр БНФ описывает так:

<двоичный код>::=<двоичная цифра>|<двоичный

код><двоичная цифра>

Определение, в котором некоторое понятие определяется само через себя, называется рекурсивным. Рекурсивные определения характерны для БНФ.

Возвратная стрелка обозначает возможность многократного повторения. Очевидно, что диа­грамма более наглядна, чем БНФ.

Синтаксические диаграммы были введены Н. Виртом и использованы для описания созданного им языка Паскаль.

Семантика – смысловое содержание конструкций, предложений языка, семантический анализ – это проверка смысловой правильности конструкции. Например, если мы в выражении используем переменную, то она должна быть определена ранее по тексту программы, а из этого определения может быть получен ее тип. Исходя из типа переменной, можно говорить о допустимости операции с данной переменной. Семантические ошибки возникают при недопустимом использовании операций, массивов, функций, операторов и пр.