Реляционная БД (РБД): понятие, основные элементы БД и краткая хар-стика работы с РБД. Терминология и базовые понятия реляционных бд

Лекция 43. Реляционная структура данных. Общие понятия реляционного подхода к организации БД. Основные концепции и термины

Достоинства и недостатки

Ограничения целостности

Манипулирование данными

Примерный набор операций может быть следующим:

Лекция 26. Найти конкретную запись в наборе однотипных записей (инженера Сидорова);

Лекция 27. Перейти от предка к первому потомку по некоторой связи (к первому сотруднику отдела 310);

Лекция 28. Перейти к следующему потомку в некоторой связи (от Сидорова к Иванову);

Лекция 29. Перейти от потомка к предку по некоторой связи (найти отдел Сидорова);

Лекция 30. Создать новую запись;

Лекция 31. Уничтожить запись;

Лекция 32. Модифицировать запись;

Лекция 33. Включить в связь;

Лекция 34. Исключить из связи;

Лекция 35. Переставить в другую связь и т.д.

В принципе их поддержание не требуется, но иногда требуют целостности по ссылкам (как в иерархической модели).

Сильные места ранних СУБД:

Лекция 36. Развитые средства управления данными во внешней памяти на низком уровне;

Лекция 37. Возможность построения вручную эффективных прикладных систем;

Лекция 38. Возможность экономии памяти за счет разделения подобъектов (в сетевых системах).

Недостатки:

Лекция 39. Слишком сложно пользоваться;

Лекция 40. Фактически необходимы знания о физической организации;

Лекция 41. Прикладные системы зависят от этой организации;

Лекция 42. Их логика перегружена деталями организации доступа к БД.

Реляционная модель

В конце 60-х годов появились работы, в которых обсуждались возможности применения различных табличных даталогических моделей данных, т.е. возможности использования привычных и естественных способов представления данных. Наиболее значительной из них была статья сотрудника фирмы IBM д-ра Э.Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks. CACM 13: 6, June 1970), где, вероятно, впервые был применен термин "реляционная модель данных".

Будучи математиком по образованию Э.Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двумерных таблиц особого вида, известного в математике как отношение – relation (англ.).

Наименьшая единица данных реляционной модели – это отдельное атомарное (неразложимое) для данной модели значение данных. Так, в одной предметной области фамилия, имя и отчество могут рассматриваться как единое значение, а в другой – как три различных значения.

Основными понятиями реляционных баз данных являются тип данных, домен, атрибут, кортеж, первичный ключ и отношение.

Терминология и базовые понятия реляционных БД

Почти все программные продукты, созданные с конца 70-х г. основаны на реляционном подходе:

1. Данные представлены в двухмерных таблицах, организованных по определенным правилам.

2. Пользователю предоставляются операторы для работы с данными, с помощью которых генерируются новые таблицы на основе исходных – запросы.

Реляционные базы данных – единое хранилище данных, которое однозначно определяется, а затем используется многими пользователями. Изменение и добавление данных в БД не влияет на приложение.

Система управления базами данных – программный комплекс, с помощью которого пользователи могут определять и поддерживать БД, осуществлять контролируемый доступ.

Базовые понятия реляционных баз данных:

1. Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение символьных, числовых данных, битовых строк, специализированных числовых данных (таких, как "деньги"), а также специальных "темпоральных" данных (дата, время, временной интервал).

2. Реляционная модель основана на математическом понятии отношение , физическим представлением которого является таблица, то есть отношением можно назвать плоскую таблицу, состоящую из столбцов и строк.

3. Кортеж , соответствующий данной схеме отношения, - это множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения.

4. Атрибут – столбец таблицы, поле файла БД. Значения атрибутов в таблице-отношении могут иметь только один определенный вид функциональной зависимости друг от друга, а именно все значения в произвольном кортеже должны по отдельности зависеть только от значений столбца или группы столбцов - одних для всего отношения. Такой столбец или группа столбцов называются ключевыми, а значения атрибутов в них - ключами.

5. Домен – набор допустимых значений одного или нескольких атрибутов.

6. Степень отношения определяется количеством атрибутов, которое оно содержит. Отношение с одним атрибутом имеет степень 1 и называется унарным отношением. Отношение с двумя атрибутами называется бинарным, отношение с тремя атрибутами – тернарным, а для отношения с большим количеством атрибутов используется термин n-арное.

7. Кардинальность отношений – количество кортежей, которое содержится в отношении. Эта характеристика меняется при каждом удалении или добавлении кортежей.

8. Исходя из вышеизложенного, реляционная база данных состоит из отношений, структура которых определяется с помощью особых методов, называемых нормализацией.

9. В отношении не должно быть повторяющихся кортежей, в связи с этим вводится понятие реляционных ключей для уникальной идентификации каждого отдельного кортежа отношения по значениям одного или нескольких атрибутов.

10. Суперключ – атрибут или множество атрибутов, которое единственным образом идентифицирует кортеж данного отношения.

11. Потенциальный ключ – суперключ, который не содержит подмножества, также являющегося суперключем данного отношения. Потенциальный ключ К для данного отношения R обладает двумя свойствами:

· Уникальность. В каждом кортеже отношения R значение ключа К единственным образом идентифицирует этот кортеж.

· Неприводимость. Никакое допустимое подмножество ключа К не обладает свойством уникальности.

12. Первичный ключ – потенциальный ключ, который выбран для уникальной идентификации кортежей внутри отношения, остальные невыбранные ключи являются альтернативными. Если первичный ключ состоит из одного поля, он называется простым, если из нескольких полей - составным.

13. Вторичный (внешний) ключ(ВК) - это одно или несколько атрибутов внутри отношения, которые соответствуют потенциальному ключу некоторого отношения и выполняют роль поисковых или группировочных признаков. В отличие от первичного значение вторичного ключа может повторяться в нескольких записях файла, то есть он не является уникальным. Если по значению первичного ключа может быть найден один единственный экземпляр записи, то по вторичному - несколько.

14. Отношение - это множество кортежей, соответствующих одной схеме отношения.

15. Базовое отношение – отношение, кортежи которого физически хранятся в базе данных.

16. Представления – динамический результат одной или нескольких реляционных операций над базовыми отношениями с целью создания некоторого иного отношения. Представление является виртуальным отношением, которое реально в базе данных не существует, но создается по требованию отдельного пользователя в момент поступления этого требования. Представления позволяют достичь более высокой защищенности данных и предоставляют проектировщику средства настройки пользовательской модели.

17. Фундаментальные свойства отношений:

· Отношение имеет имя, которое отличается от имен всех других отношений в реляционной схеме.

· Каждая ячейка отношения содержит только одно элементарное (неделимое) значение.

· Каждый атрибут имеет уникальное имя.

· Значения атрибута берутся из одного и того же домена.

· Каждый кортеж является уникальным, т.е. дубликатов кортежей быть не может.

· Порядок следования атрибутов не имеет значения.

· Теоретически порядок следования кортежей в отношении не имеет значения. (Но практически этот порядок может существенно повлиять на эффективность доступа к ним.)

Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

1. Структура модели основывается на нормализованных отношениях с учетом базовых понятий реляционной БД.

2. В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление.

3. Целостность (от англ. integrity – нетронутость, неприкосновенность, сохранность, целостность) понимается как правильность данных в любой момент времени.

База данных (БД) - это поименованная совокупность структурированных данных, относящихся к определенной предметной области и предназначенных для хранения, накопления и обработки с помощью ЭВМ.

Реляционная База Данных (РБД) - это набор отношений, имена которых совпадают с именами схемотношений в схеме БД.

Основные понятия реляционных баз данных:

· Тип данных – тип значений конкретного столбца.

· Домен (domain) – множество всех допустимых значений атрибута.

· Атрибут (attribute) – заголовок столбца таблицы, характеризующий поименованное свойство объекта, например, фамилия студента, дата оформления заказа, пол сотрудника и т.п.

· Кортеж – строка таблицы, представляющая собой совокупность значений логически связанных атрибутов.

· Отношение (relation) – таблица, отражающая информацию об объектах реального мира, например, о студентах, заказах, сотрудниках, жителях и т.д.

· Первичный ключ (primary key) – поле (или набор полей) таблицы, однозначно идентифицирующий каждую из ее записей.

· Альтернативный ключ – это поле (или набор полей), несовпадающее с первичным ключом и уникально идентифицирующий экземпляр записи.

· Внешний ключ – это поле (или набор полей), чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. При связи двух таблиц с первичным ключом первой таблицы связывается внешний ключ второй таблицы.

· Реляционная модель данных (РМД) - организация данных в виде двумерных таблиц.

Каждая реляционная таблица должна обладать следующими свойствами:

1. Каждая запись таблицы уникальна, т.е. совокупность значений по полям не повторяется.

2. Каждое значение, записывается на пересечении строки и столбца - является атомарным (неразделимым).

3. Значения каждого поля должны быть одного типа.

4. Каждое поле имеет уникальное имя.

5. Порядок расположения записей несущественен.

Основные элементы БД:

Поле - элементарная единица логической организации данных. Для описания поля используются следующие характеристики:

· имя, например, Фамилия, Имя, Отчество, Дата рождения;

· тип, например, строковый, символьный, числовой, датовый;

· длина, например, в байтах;

· точность для числовых данных, например, два десятичных знака для отображения дробной части числа.

Запись - совокупность значений логически связанных полей.

Индекс – средство ускорения операции поиска записей, использующееся для установки связей между таблицами. Таблица, для которой используется индекс, называют индексированной. При работе с индексами необходимо обращать внимание на организацию индексов, являющуюся основой для классификации. Простой индекс представлен одним полем или логическим выражением, обрабатывающим одно поле. Составной индекс представлен несколькими полями с возможностью использования различных функций. Индексы таблицы хранятся в индексном файле.


Целостность данных – это средство защиты данных по полям связи, позволяющее поддерживать таблицы в согласованном (непротиворечивом) состоянии (то есть не допускающее существование в подчиненной таблице записей, не имеющих соответствующих записей в родительской таблице).

Запрос – сформулированный вопрос к одной или нескольким взаимосвязанным таблицам, содержащий критерии выборки данных. Запрос осуществляется с помощью структурированного языка запросов SQL (Srtructured Query Language). В результате выборки данных из одной или нескольких таблиц может быть получено множество записей, называемое представлением.

Представление данных – сохраняемый в базе данных именованный запрос на выборку данных (из одной или нескольких таблиц).

Представление, по существу, является временной таблицей, формируемой в результате выполнения запроса. Сам запрос может быть направлен в отдельный файл, отчет, временную таблицу, таблицу на диске и т.п.

Отчет – компонент системы, основное назначение которого – описание и вывод на печать документов на основе информации из БД.

Общая характеристика работы с РБД:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.


28. АЛГОРИТМИЧЕСКИЕ ЯЗЫКИ. ТРАНСЛЯТОРЫ (ИНТЕРПРЕТАТОРЫ И КОМПИЛЯТОРЫ). АЛГОРИТМИЧЕСКИЙ ЯЗЫК БЕЙСИК. СТРУКТУРА ПРОГРАММЫ. ИДЕНТИФИКАТОРЫ. ПЕРЕМЕННЫЕ. ОПЕРАТОРЫ. ОБРАБОТКА ОДНОМЕРНЫХ И ДВУХМЕРНЫХ МАССИВОВ. ФУНКЦИИ ПОЛЬЗОВАТЕЛЯ. ПОДПРОГРАММЫ. РАБОТА С ФАЙЛАМИ ДАННЫХ.

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Алгоритмический язык (Algorithmic language) - язык программирования - искусственный (формальный) язык, предназначенный для записи алгоритмов. Язык программирования задается своим описанием и реализуется в виде специальной программы: компилятора или интерпретатора. Примерами алгоритмических языков служат – Borland Pascal, C++, Basic и т.д.

Основные понятия алгоритмического языка:

Состав языка :

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами.

Символы , элементарные конструкции, выражения и операторы составляют иерархическую структуру, поскольку элементарные конструкции образуются из последовательности символов.

Выражения - это последовательность элементарных конструкций и символов,

Оператор - последовательность выражений, элементарных конструкций и символов.

Описание языка:

Описание символов заключается в перечислении допустимых символов языка. Под описанием элементарных конструкций понимают правила их образования. Описание выражений - это правила образования любых выражений, имеющих смысл в данном языке. Описание операторов состоит из рассмотрения всех типов операторов, допустимых в языке. Описание каждого элемента языка задается его СИНТАКСИСОМ и СЕМАНТИКОЙ.

Синтаксические определения устанавливают правила построения элементов языка.

Семантика определяет смысл и правила использования тех элементов языка, для которых были даны синтаксические определения.

Символы языка - это основные неделимые знаки, в терминах которых пишутся все тексты на языке.

Элементарные конструкции - это минимальные единицы языка, имеющие самостоятельный смысл. Они образуются из основных символов языка.

Выражение в алгоритмическом языке состоит из элементарных конструкций и символов, оно задает правило вычисления некоторого значения.

Оператор задает полное описание некоторого действия, которое необходимо выполнить. Для описания сложного действия может потребоваться группа операторов.

В этом случае операторы объединяются в Составной оператор или Блок. Действия , заданные операторами, выполняются над данными. Предложения алгоритмического языка, в которых даются сведения о типах данных, называются описаниями или неисполняемыми операторами. Объединенная единым алгоритмом совокупность описаний и операторов образует программу на алгоритмическом языке. В процессе изучения алгоритмического языка необходимо отличать алгоритмический язык от того языка, с помощью которого осуществляется описание изучаемого алгоритмического языка. Обычно изучаемый язык называют просто языком, а язык, в терминах которого дается описание изучаемого языка - Метаязыком .

Трансляторы - (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Программа, написанная на каком-либо алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на ЭВМ. ЭВМ понимает только язык машинных команд. Следовательно, программа на алгоритмическом языке должна быть переведена (транслирована) на язык команд конкретной ЭВМ. Такой перевод осуществляется автоматически специальными программами-трансляторами, создаваемыми для каждого алгоритмического языка и для каждого типа компьютеров.

Существуют два основных способа трансляции - компиляция и интерпретация.

1.Компиляция: Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

При компиляции вся исходная программа сразу превращается в последовательность машинных команд. После этого полученная результирующая программа выполняется ЭВМ с имеющимися исходными данными. Достоинство такого способа состоит в том, что трансляция выполняется один раз, а (многократное) выполнение результирующей программы может осуществляться с большой скоростью. Вместе с тем результирующая программа может занять в памяти ЭВМ очень много места, так как один оператор языка при трансляции заменяется сотнями или даже тысячами команд. Кроме того, отладка и видоизменения транслированной программы весьма затруднены.

2. Интерпретация: Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

При интерпретации исходная программа хранится в памяти ЭВМ почти в неизменном виде. Программа-интерпретатор декодирует операторы исходной программы по одному и тут же обеспечивает их выполнение с имеющимися данными. Интерпретируемая программа занимает в памяти компьютера мало места, ее легко отлаживать и видоизменять. Зато выполнение программы происходит достаточно медленно, поскольку при каждом исполнении заново осуществляется поочередная интерпретация всех операторов.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

Как уже говорилось, наиболее популярны реляционные модели данных. В соответствии с реляционной моделью данных данные представляются в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры или реляционного исчисления.

В отличие от иерархических и сетевых моделей данных в реля­ционной модели операции над объектами имеют тео­ретико-множественный характер. Это дает возможность пользовате­лям формулировать их запросы более компактно, в терминах более крупных агрегатов данных.

Рассмотрим терми­нологию, используемую при работе с реляционными базами данных.

Первичный ключ. Первичным ключом называется поле или набор полей, однозначно идентифицирующих запись.

Нередко возможны несколько вариантов выбора первичного ключа. Например, в небольшой организации первичными ключами сущности "сотрудник" могут быть как табельный номер, так и комбинация фамилии, имени и отчества (при уверенности, что в организации нет полных тезок), либо номер и серия паспорта (если паспорта есть у всех сотрудников). В таких случаях при выборе первичного ключа предпочтение отдается наиболее простым ключам (в данном примере - табельному номеру). Другие кандидаты на роль первичного ключа называются альтернативными ключами.

Требования, предъявляемые к первичному ключу:

    уникальность – то есть в таблице не должно существовать двух или более записей с одинаковым значением первичного ключа;

    первичный ключ не должен содержать пустых значений.

При выборе первичного ключа рекомендуется выбирать атрибут, значение которого не меняется в течение всего времени существования экземпляра (в этом случае табельный номер предпочтительнее фамилии, так как ее можно сменить, вступив в брак).

По полям, которые часто используются при поиске и сортировке данных устанавливаются вторичные ключи : они помогут системе значительно быстрее найти нужные данные. В отличие от первичных ключей поля для индексов (вторичные ключи) могут содержать неуникальные значения.

Первичные ключи используются для установления связей между таблицами в реляционной БД. В этом случае первичному ключу одной таблицы (родительской) соответствует внешний ключ другой таблицы (дочерней). Внешний ключ содержит значения связанного с ним поля, являющегося первичным ключом. Значения во внешнем ключе могут быть неуникальными, но не должны быть пустыми. Первичный и внешний ключи должны быть одинакового типа.

Связи между таблицами . Записи в таблице могут зависеть от одной или несколь­ких записей другой таблицы. Такие отношения между таблицами называютсясвязями. Связь определяется следующим образом: поле или несколько полей одной таблицы, называемоевнешним ключом, ссылается на первичный ключ другой таблицы. Рассмотрим пример. Так как каждый заказ должен исходить от определенного клиента, каждая запись таблицыOrders (заказы) должна ссылаться на соответствующую запись таблицыCustomers (клиенты). Это и есть связь между таблицамиOrders иCustomers . В таблицеOrders должно быть поле, где хранятся ссылки на те или иные записи таблицыCustomers .

Типы связей . Существует три типа связей между таблицами.

Один к одному - каждая запись родительской таблицы связана только с одной запи­сью дочерней. Такая связь встречается на практике намного реже, чем отношениеодин ко многим и реализуется путем определения уникального внешнего ключа. Связь один к одному используют, если не хотят, чтобы таблица «распухала» от большого числа полей. Базы данных, в состав которых входят таблицы с такой связью не могут считаться полностью нормализованными.

Один ко многим - каждая запись родительской таблицы связана с одной или не­сколькими записями дочерней. Например, один клиент может сделать несколько заказов, однако несколько клиентов не могут сделать один заказ. Связь один ко многим является самой распространенной для реляционных баз данных.

Многие ко многим - несколько записей одной таблицы связаны с несколькими записями другой. Например, один автор может написать несколько книг и не­сколько авторов - одну книгу. В случае такой связи в общем случае невозможно определить, какая запись одной таблицы соответствует выбранной записи другой таблицы, что делает неосуществимой физическую (на уровне индексов и триггеров) реализацию такой связи между соответствующими таблицами. Поэтому перед переходом к физической модели все связи "многие ко многим" должны быть переопределены (некоторые CASE-средства, если таковые используются при проектировании данных, делают это автоматически). Подобная связь между двумя таблицами реализу­ется путем создания третьей таблицы и реализации связи типа «один ко многим» каждой из имеющихся таблиц с промежуточной таблицей.

Реляционная модель базируется на теоретико-множественном понятии отношения. В математических дисциплинах существует понятие «отношение » (relation), физическим представлением которого является таблица . Отсюда и произошло название модели - реляционная .

Применительно к БД понятия «реляционная БД» и «табличная БД» являются синонимами. Реляционные базы получили наибольшее распространение в мире. Почти все продукты БД, созданные с конца 70-х годов, являются реляционными.

В 1970 году появились работы, в которых обсуждались возможности применения различных табличных моделей данных. Наиболее значительной из них была статья сотрудника фирмы IBM д-ра Э. Кодда (Codd E.F., A Relational Model of Data for Large Shared Data Banks (Реляционная модель данных для больших совместно используемых банков данных). CACM 13: 6, June 1970), где впервые был применен термин "реляционная модель данных" . Проект System R был разработан в исследовательской лаборатории корпорации IBM. Этот проект был задуман с целью доказать практичность реляционной модели. Реляционные СУБД относятся к СУБД второго поколения.

Цели создания реляционной модели данных:

1. Обеспечение более высокой степени независимости от данных.

2. Создание прочного фундамента для решения проблем непротиворечивости и избыточности данных.

3. Расширение языков управления данными за счет включения операций над множествами.

Коммерческие системы на основе реляционной модели данных начали появляться в конце 70-х - начале 80-х годов. В настоящее время существует несколько сотен типов различных реляционных СУБД.

Реляционная модель является удобной и наиболее привычной формой представления данных в виде таблицы (отношения ). Каждое отношение имеет имя и состоит из поименованных атрибутов (столбцов) данных. Одним из основных преимуществ реляционной модели является ее однородность . Все данные хранятся в таблицах, в которых каждая строка имеет один и тот же формат. Каждая строка в таблице представляет некоторый объект реального мира или соотношение между объектами.

Основными понятиями, с помощью которых определяется реляционная модель, являются следующие:

- реляционная БД - набор нормализованных отношений;

- отношение - файл, плоская таблица, состоящая из столбцов и строк; таблица, в которой каждое поле является атомарным;

- домен - совокупность допустимых значений, из которой берется значение соответствующего атрибута определенного отношения. С точки зрения программирования, домен - это тип данных;

- универсум - совокупность значений всех полей или совокупность доменов;


- кортеж - запись, строка таблицы;

- кардинальность - количество строк в таблице;

- атрибуты - поименованныеполя, столбцы таблицы;

- степень отношения - количество полей (столбцов);

- схема отношения - упорядоченный список имен атрибутов;

- схема реляционной БД - совокупность схем отношений;

- первичный ключ - уникальный идентификатор с неповторяющимися записями - столбец или некоторое подмножество столбцов, которые единственным образом определяют строки.

Первичный ключ, который включает более одного столбца, называется множественным , или комбинированным , или составным , или суперключом .

Правило целостности объектов утверждает, что первичный ключ не может быть полностью или частично пустым.

Соотношение этих понятий иллюстрируется на рис. 4.5.

ФИО Год рожд. Должность Кафедра
1. Иванов И. И. Зав. каф. 22
2. Сидоров С. С. Проф. 22
3. Андреева Г. Г. Проф. 22
4. Цветкова С. С. Доцент
5. Козлов К. К. Доцент 22
6. Петров П. П. Ст. преп. 22
Атрибуты

рис. 4.5. Основные понятия реляционной модели данных.

Иногда в качестве первичного ключа в таблице могут быть выбраны разные столбцы. Выделенный ключ - ключ, явно перечисленный вместе с реляционной схемой. В противном случае говорят о неявном ключе, или возможном ключе, или ключе-кандидате.

- внешний ключ - это столбец или подмножество столбцов одной таблицы, которые могут служить в качестве первичного ключа для другой таблицы. Внешний ключ таблицы является ссылкой на первичный ключ другой таблицы. Поскольку целью построения БД является хранение всех данных, по возможности, в одном экземпляре, то если некий атрибут присутствует в нескольких отношениях, то его наличие обычно отражает определенную связь между строками этих отношений.

Внешние ключи реализуют связи между таблицами БД.

Внешний ключ, как и первичный ключ, может представлять собой комбинацию столбцов. На практике внешний ключ всегда будет составным, если он ссылается на составной первичный ключ другой таблицы. Количество столбцов и их типы данных в первичном и внешнем ключах должны совпадать.

Если таблица связана с несколькими другими таблицами, она может иметь несколько внешних ключей.

Каждая реляционная таблица обладает следующими свойствами :

Имеет имя, которое отличается от имен всех других таблиц;

Данные в ячейках таблицы должны быть структурно неделимыми. Недопустимо, чтобы в ячейке таблицы содержалось более одной порции информации. Например , номер и серия паспорта должны располагаться в разных столбцах таблицы;

Все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

Каждый столбец имеет уникальное имя;

Одинаковые строки в таблице отсутствуют;

Порядок следования строк и столбцов может быть произвольным, независимо от их переупорядочивания отношение будет оставаться одним и тем же, а потому иметь тот же смысл.