Как выбрать топологию сети. Топология домашних сетей Выбор топологии сети для организации

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Сейчас наступил век компьютеризации. Компьютеры стоят даже в самых маленьких фирмах.

Естественно для полноценной работы требуется обмен информацией. Для этого и проектируются локальные сети.

Что же позволяет локальная сеть:

1. Обмен информацией между членами сети. (Документы, выполненные работы студентов, программы и т.д.)

Скорость современной сети совершенно свободно позволяет смотреть фильмы и слушать музыку с удалённого компьютера, даже не переписывая их себе на жесткий диск, что говорить о передаче документов. Но в процессе работы могут использоваться программы, имеющие большой объем. Поэтому если это вдруг потребуется, то 1 гигабайт данных можно переписать всего за десять минут.

2. Возможность совместно использовать такое оборудование как принтеры, CD-RW/DVD/DVD-RW.

3. Совместное использование канала доступа в Интернет.

Тут масса вариантов, дело в том, что когда канал доступа в Интернет достаточно широк, речь идет о выделенной линии или ADSL, то даже при одновременном доступе большого количества пользователей ощутимого падения скорости не произойдет.

4. Мультиплатформность

С помощью ЛВС можно объединять компьютеры любых типов (Например: PC и Macintosh) и с любыми операционными системами. (Windows, Unix, OS/2, MacOs).

1.Выбор топологии и строения сети

1.1 Строение сети

Строение сети зависит полностью от физического и логического местонахождения компьютеров в сети.

У нас: 3 отдельных аудитории с компьютерами (логически - нижний уровень, так как это студенты);

1 группа компьютеров преподавателей, находящихся по одному в каждой аудитории и 4 в отдельном кабинете (средний уровень).

2 сервера: Интернет-сервер и файл-сервер (они входят в группу преподавателей - для удобства администрирования).

(схему строения смотри в приложении №1)

1.2 Выбор топологии сети.

Топологии бывают нескольких типов:

· Шинные (моноканал)

Шинная топология, реализуемая кабелем, прокладываемым от одного компьютера к другому в виде последовательной цепочки, напоминающей гирлянду на новогодней елке. Все сигналы, предаваемые любым компьютером в сеть, идут по шине в обоих направлениях ко всем остальным компьютерам. Два конца шины должны быть «закрыты» при помощи электрических сопротивлений, обнуляющих напряжения, приходящие на эти концы, для того, чтобы, сигналы не отражались и не уходили в обратном направлении. Основной недостаток шинной топологии состоит в том, что, подобно елочной гирлянде, дефект кабеля в любом месте его протяженности делит сеть на две части, не способные общаться между собой. Большая часть сетей, построенных на коаксиальных кабелях, таких как сети Ethernet, используют шинную архитектуру.

· Кольцевые

Топология кольца функциональна, эквивалентна шине, у которой концы соединены друг с другом; таким образом, сигналы передаются от одного компьютера к другому, двигаясь по кругу. Однако коммуникационное кольцо - это только логическая абстракция, а не физическая конструкция. Фактически сеть представляет собой звезду, но при этом специальный концентратор реализует логическое кольцо путем пересылки входящего сигнала только через следующий нисходящий порт (вместо передачи через все порты, как это делает концентратор при применении топологии «звезда»). Каждый компьютер, получив входящий сигнал, обрабатывает его (если это необходимо) и посылает обратно концентратору для передачи следующей рабочей станции в сети. В соответствии с данным принципом работы, система, передающая сигнал в сеть, должна также удалить его после того, как он обошел все кольцо полностью. Сети, сконструированные на основе топологии «кольцо», могут использовать различные типы кабеля. Например, сети Token Ring используют витую пару, в то время как FDDI - сети реализуют топологию «кольцо» с помощью оптоволоконных кабелей.

· Древовидные

Это подвид смешанной, состоящей из двух шин.

· Звездообразные

Топология «звезда» использует отдельный кабель для каждого компьютера, проложенный от центрального устройства, называемого хабом (hub) или концентратором. Концентратор транслирует сигналы, поступающие на любой из его портов, на все остальные порты; в результате чего сигналы, посылаемые одним узлом, достигают остальных компьютеров. Сеть на основе «звезды» более устойчива к повреждениям, нежели сеть на базе шинной архитектуры, так как повреждение кабеля затрагивает непосредственно только тот компьютер, к которому он подсоединен, а не всю сеть. Большинство сетей, использующих кабель типа «витая пара», монтируются по топологии «звезда», например, 10 BaseT Ethernet.

· Смешанные

Это несколько соединенных между собой разных или одинаковых топологий.

Теперь нам нужно определиться какая топология будет у нашей сети. Учитывая, что у нас имеется несколько классов, учительская сеть, подключение к Интернету, то наша сеть по топологии будет относится к смешанной - древовидная звезда.

Использование именно этой топологии выбрано, так как нам нужно соединить несколько разных сегментов в одну «глобальную» сеть.

Использование маршрутизации - неоправданно. DNS - сервера, домены, шлюзы и т.д. использоваться не будут. Это упростит нашу сеть и немного улучшит ее работоспособность:

при использовании шлюза или домена может возникнуть проблема - при его поломке весь сегмент теряет работоспособность.

(Схему топологии смотри в приложении №2.)

2. Выбор составляющих сети

2.1 Сетевые кабели

Есть 3 основных типа сетевых проводников с массой вариаций, от выбора сетевого кабеля зависит тип сетевых карт и коммутатора, которые мы будем использовать в своей сети (внешний вид в приложении №3).

2.1.1 Витая Пара (Twisted Pair)

В настоящее время наиболее распространённый сетевой проводник по структуре напоминает многожилковый телефонный кабель, и имеет 8 медных жилок перевитых друг с другом и хорошую плотную изоляцию из поливинилхлорида. Обеспечивает высокую скорость соединения до 100 мегабит. Бывает Неэкранированная и Экранированная витая пара. Продается в большинстве компьютерных фирм.

Витая пара малоподвержена электромагнитным наводкам, особенно экранированная. Даже при прокладке неэкранированной витой пары вблизи электрораспределительного щитка, и вместе с линиями высокого напряжения отмечалась относительно стабильная работа сети на скоростях свыше 80 мегабит в секунду. Кабель чрезвычайно легко ремонтируется, (несмотря на то, что по стандартам восстановлению повреждённый участок не подлежит) и наращивается с помощью изоленты и ножниц. Даже имея многочисленные участки восстановленных таким образом разрывов, сеть на витой паре работает стабильно, хотя и скорость связи несколько падает.

2.1.1а Сеть на 1000 мегабит (Gigabit Lan)

Кроме этого, в сетях основанных на витой паре можно использовать различные нестандартные проводники позволяющие получить новые характеристики и свойства сети.

1000 мегабитные сети это дальнейшая ступень эволюции сетей на витой паре. В отличие от 10/100 мегабитных сетей, в которых используются только 4 проводника из 8, при гигабитном соединении задействованы все 8 проводников, с использованием соответствующего оборудование сетевых карт и коммутатора с поддержкой гигабитного соединения. Скорость передачи данных составляет порядка 80-100 мегабайт в секунду что, как правило, значительно превышает потоки передачи данных жестких дисков (40-60 мегабайт/сек). Не смотря на то, что такое соединение в 10 раз быстрее обычного 100 мегабитного, использовать гигабитную сеть несколько затруднительно из-за высокой стоимости гигабитных коммутаторов и сетевых карт.

Так же при использовании гигабитной сети необходимо, что бы витая пара прокладывалась строго по стандартам без сильных перегибов, а так же недопустимо использовать скрутку-пайку для наращивания подобной сети.

2.1.2 Коаксиальный Кабель (Coaxial)

Один из первых проводников, использовавшихся для прокладки сетей. Содержит в себе центральный проводник, слой изолятора в оплетке и пластиковую изоляцию, иногда слоев изоляции больше иногда меньше. Максимальная скорость передачи данных 10 мегабит. Он достаточно сильно подвержен электромагнитным наводкам. В случае повреждения ремонтируется с трудом, требуется пайка и тщательная изоляция, но даже после этого восстановленный участок работает медленно и нестабильно. В зоне повреждённого участка появляются отражения электромагнитных волн, распространяющихся в коаксиальном кабеле, что приводит к искажениям передаваемого сигнала. Единственным преимуществом коаксиального кабеля перед витой парой является большее расстояние около 600-700 метров, на которое можно передавать данные. Однако использование витой пары и альтернативных проводников, например полевого кабеля П-296 позволяет добиться устойчивой связи на скорости 10 мегабит на расстоянии до 500 метров.

В настоящее время коаксиальный кабель в основном используется в качестве проводника сигнала спутниковых тарелок и прочих антенн. В компьютерных сетях использование коаксиального кабеля, как правило, не оправданно.

2.1.3 Оптико-волоконный кабель (Optic Fiber)

Один или несколько световодов, хорошо защищенных, пластиковой изоляцией. Сверхвысокая скорость передачи данных, кабель абсолютно не подвержен помехам. Расстояние между системами соединенными оптиковолокном может превышать 2 километра. Однако кабель стоит чрезвычайно дорого и для работы с ним требуется специальное сетевое оборудование (Сетевые карты, Концентраторы и т.д.), которое так же стоит недёшево. Оптиковолокно не подлежит ремонту, в случае повреждения участок приходится прокладывать заново.

Пожалуй, очевидно, что оптимальным по всем характеристикам и стоимости для использования в нашей сети является витая пара.

Ее стоимость 9руб. за метр.

(О способе ее монтажа смотри в Приложении №4)

2.2 Сетевой Коммутатор

Hub - (Концентратор) когда сетевая карта отсылает пакет данных, Hub просто делит и усиливает сигнал так, что его получают все пользователи сети, но принимает только та сетевая карта, которой адресован пакет данных. Очевидно, что при одновременной работе нескольких пользователей скорость сети резко падает. В настоящее время большинство фирм попросту прекратили выпуск концентраторов, и перешли на выпуск более эффективных коммутаторов Switch.

Switch - (Коммутатор) в отличие от Hub анализирует откуда и куда отправлен пакет информации и соединяет только эти компьютеры, в то время как остальные каналы остаются свободными. Конечно, лучше использовать Switch, так как он работает гораздо быстрее особенно в сетях с большим количеством пользователей. Внешне Switch практически не отличается от Hub.

(приложение №3)

2.2.1.1 Какой Коммутатор выбрать?

В настоящее время существует множество моделей и типов сетевых коммутаторов, их цена и функции очень различаются.

2.2.1.2 Скорость работы

Коммутатор может работать на скорости 10 или 100 мегабит от этого зависит скорость всей сети.

10 мегабитные коммутаторы сейчас стоят порядка 15$-20$, но не стоит пытаться сэкономить, используя более дешевый 10 мегабитный коммутатор. Скорости 10 мегабит вполне достаточно для небольших текстов, но это не вполне подходят для активного обмена значительными (несколько гигабайт) объемами информацией особенно в большой локальной сети. Кроме того, нужно учитывать, что на самом деле 10 мегабит (около 1.2 мегабайта в сек.) это максимальная Теоретическая скорость, на самом деле реально данные будут предаваться со скоростью около 6-8 мегабит, на длинных отрезках сети и того меньше.

Поэтому очевидна необходимость использования 100 мегабитного оборудования.

2.2.1.3 Количество портов

Это определяющий показатель характеризует количество компьютеров, которые можно к такому концентратору подключить. Так же во многом данный параметр определяет цену Switch.

Наш выбор пал на свичи с 16 портами: 15 компьютеров + 1 «учитель-маршрутизатор».

2.2.1.4 Поддержка Принт Сервера

Весьма полезная, но не всегда необходимая функция, которая правда присутствует далеко не у всех коммутаторов. Это наличие на коммутаторе дополнительного, как правило, LPT реже USB разъема, если подключить к этому разъему принтер, он станет, доступен всем членам ЛВС. При этом принтер не зависит, от какого бы то ни было компьютера сети.

Нам эта функция не требуется, так как принтеры имеются на учительских компьютерах.

2.2.1.5 Поддержка дополнительных сетевых проводников

Некоторые так называемые гибридные коммутаторы имеют дополнительные BNC разъемы (под коаксиальный кабель или под оптоволокно). В виду вышеперечисленных сложностей, при использовании коаксиального и оптико-волоконного, приобретать гибридные коммутаторы не стоит. К тому же, их цена намного выше обычных.

Коммутатор Ethernet SwitchHub 16port 10/100MBps

Качественные и дешевые поддерживают соединение 100 мегабит, они достаточно компактны, не требуют никакой настройки и стоят в пределах 35-45$, они оптимально подходят для постройки ЛВС.

2.2.3 Объединяем 2 коммутатора

У большинства современных коммутаторов/концентраторов существует специальный Uplink разъем (Он часто объединяется с первым портом концентратора) в него можно просто воткнуть обычный стандартно обжатый сетевой кабель и все.

Если же Uplink порт уже занят либо его нет. Тогда вам потребуется кроссовер витая пара. Кроссовер кабелем можно объединить 2 или более коммутаторов, используя любые одинаковые порты.

3. Выбор комплектующих компьютеров

Наверное, сразу стоит оговориться, что мое мнение - компьютеры студентов и преподавателей должны быть одинаковыми. Я думаю, это сделает небольшой акцент на некоем равенстве преподавателя и студента. К тому же так проще подобрать среднюю конфигурацию компьютера, удовлетворяющего требованиям и тех и других.

В этой главе подробно описаны рабочие станции учителей и студентов.

3.1 Нужно ли «видео» и «звук»?

Компьютер есть, наверное, у каждого третьего. За последние 10 лет был совершен огромный скачек в производительности комплектующих.

Сейчас появляется много новых программ, предъявляющих большие требования к компьютерам. Но есть одно НО - это, в основном, либо игры либо серьезные программы, работающие с 2D и 3D графикой (видео-, фото- и мульт- 2D и 3D редакторы).

Разрабатываемая сеть такими вопросами заниматься не будет. Конечно, PhotoShop и Компас студенты изучают, но у них не такие большие требования.

Значит, делаем вывод:

Мощные звуковая и видео карты нам не требуются;

На этом можно сэкономить, купив материнскую плату со встроенными «звуком» и «видео».

3.2 Материнская плата

Исходя из выше сказанного и с учетом возможной дальнейшей модернизации, я решил взять за основу материнскую плату EPOX 5EGA+.

Технические характеристики:

· Чипсет:

· Северный мост: 915G

· Южный мост: ICH6R

· Процессор: Pentium 4, Celeron, поддержка Hyper Threading.

· Память: двухканальная DDR 400/333/266 - 4 разъема, до 4Гб.

· Слоты расширения: 4x PCI, 2x PCI Express 1x, PCI Express 16x

· Дисковая подсистема: UDMA ATA 100/66, 2x UDMA ATA133, 4x Serial ATA, поддержка RAID0, RAID1, RAID0+1

· Интегрированные решения:

· Видеокарта: Intel GMA900

· Сетевой адаптер: Marvell 88e8001 1Гб.

· Разъемы: 2x Com, LPT, VGA, MIDI, PS/2 клавиатура, PS/2 мышь, S/P DIF (вход/выход), RJ45, 8x USB 2.0/1.1, звук - линейный вход, многоканальные выходы и микрофон

· Форм-фактор: АТХ

· Цена: $137

Я решил остановиться именно на этой плате, так как она, по моему мнению, является средним соотношением цена/качество.

Эта плата поддерживает PCI слоты, что очень полезно сейчас (к тому же их 4!). И она поддерживает PCI Express 1х слоты, что будет полезным в будущем при возможной модернизации.

В эту «мать» встроена довольно не плохая видео карта Intel GMA 900. Это один из последних чипов. Плюс при отказе этого видео, всегда можно поставить видео PCI Express 16x (что полезно - так как AGP карты в будущем начнут «исчезать»). Стоит отметить, что встроенная карта поддерживает DX9.0.

Комплектация у этой платы достаточно полная: инструкция (в том числе на русском), диск с драйверами, шлейфы, 2 переходника для питания Molex-SATA, 2 кабеля SATA, PCI-планка с малым COM и MIDI портами. К тому же в коробке имеется отвертка (2 крестовые и 2 обычные насадки), набор радиаторов для силовых конденсаторов и термоэлемент для измерения температуры у интересующего Вас компонента внутри компьютера - ПО на диске.

У этой платы всего два явных недостатка:

1) слегка завышенная цена;

2) необычное расположение памяти - она расположена близко к краю, это может затруднить смену/установку, так как она может оказаться под CD-ROM.

3.3 Процессор

Исходя из соображений материальной экономии и того, что на этих компьютерах не будут выполняться задачи требующие больших ресурсов, я решил остановится на процессоре Intel Celeron D.

Технические характеристики:

· Ядро: Prescott. Разрядность - 3 бит.

· Разъем: LGA775, Socket 478.

· Частотные характеристики: тактовая частота - 2,26 - 2,93 ГГц. Частота системной шины - 533 МГц.

· Термоэлектрические характеристики: максимальная температура ядра - 67град., рассеиваемая мощность - 73 - 84 Вт, напряжение ядра - 1,3 - 1,4 В.

· Кеши: кеш первого уровня - 16 кбайт данных, 12000 микроинструкций. Кеш второго уровня - 256 кбайт. Шина L1-L2 разрядностью 256 бит.

· Вычислительные конвейеры: конвейер длинной в 31 стадию. Три конвейерных блока ALU, два конвейерных блока FPU, два блока вычисления адреса.

· Дополнительные наборы команд: SSE, SSE2, SSE3, MMX.

· Особенности: поддержка технологии Execute Disable Bit (только для платформы LGA775)

· Цена: 90$

Этот процессор можно назвать «обрезанным Пентиумом». Так как, во-первых, у него очень существенно, в 4 раза, уменьшен размер кеша второго уровня (вместо 1024Mb - 256Mb). Во-вторых, частота системной шины составляет не 800, а лишь 533 МГц. Наконец, ядро этих процессоров лишено поддержки технологии Hyper-Threading, заметно ускоряющей выполнение многопоточных приложений.

«Узкое горлышко» в виде уменьшенного кеша и сниженной частоты системной шины существенно ограничивают производительность моделей Intel Celeron D. С другой стороны, за счет высокой частоты они способны добиваться неплохих результатов в работе.

Таким образом, мы получаем дешевый процессор начального уровня.

При использовании нашей материнской платы всегда есть вариант модернизации.

3.4 Жесткий диск

По моему мнению, для рабочих станций учеников достаточно 80Гб, а для учителей 120Гб.

Соответственно я подобрал неплохие и относительно дешевые SATA HDD.

Характеристики

Форматированная емкость, Гб

Скорость вращения шпинделя, об/мин

Объем кеш-памяти, Мб

Полное время поиска, мс

Шум холостого хода, дБ

Шум при поиске

Рабочая температура, °С

Количество пластин

Количество головок

Особенности

Минимальный шум в режиме ожидания.

Нет звона и почти нет вибрации.

Малый нагрев.

В тестах показал средний по быстродействию результат.

В режиме поиска головки не производят значительного шума.

Шум в режиме ожидания небольшой.

Звона нет, вибрация незначительна.

Умеренный нагрев.

3.5 ОЗУ, привод, FDD, блок питания, клавиатура и мышь

Эти части системного блока в подробном описании не нуждаются.

ОЗУ - оперативная память.

Сравнение DDR и DDR2 - не имеет смысла, так как мы ограничены возможностями материнской платы.

Естественно ставить на нашу систему менее 512Мб бессмысленно, но и более - тоже. Фирма - изготовитель будет зависеть только от цены (для нас это главный фактор).

Цена приблизительно 60$

Привод - устройство чтения компакт-дисков.

В настоящее время часто стали применяться DVD-технологии, к тому же стоимость недорогих CD и DVD приводов отличается примерно на $5-10.

Вывод - мы покупаем DVD-ROM (около $40) для «студентов» и DVD-RW и DVD-ROM (вместе около $120) для «учителей».

FDD - устройство чтения дискет.

Казалось бы ненужная, но часто спасающая часть компьютера.

Стоимость в районе $10

Блок питания - это то что дает электричество всему системному блоку.

Вместе с блоком питания (в комплекте) продаются и корпуса, но внешний вид нас не интересует.

Компьютеры достаточно требовательны к электричеству, поэтому менее 350Вт нам не подходит.

Стоимость около $25-35.

Клавиатура и мышь - неотъемлемые части компьютера.

Внешний вид и «дополнительные функции» нас не интересуют, наш выбор - самое дешевое и надежное (беспроводные нам не подходят).

Все вместе $10-15.

3.6 Монитор

Здесь нам предстоит сделать выбор: цена - качество. Т.е. какой монитор купить: ЖК или ЭЛТ?

ЖК - новая технология. Она более безопасна для глаз, требует меньшего количества расхода электричества. Но для нас это дорого. Одни из самых дешевых ЖК мониторов (17 дюймов) стоят в районе 8500руб.

ЭЛТ - это дешевле. К тому же они обладают более четкой прорисовкой графики (хотя нам это не надо, но все же плюс). Стоимость: рабочее место учителя - 250$, рабочее место студента - 150$.

Таким образом, мы получаем общую стоимость компьютеров:

Компьютер на рабочем месте учителя - 811$

Компьютер на рабочем месте студента - 608$

3.7 Интернет-сервер и файл-сервер

Подробное описание «железа» этих машин (по моему мнению) не требуется, так как здесь важна производительность.

Интернет-сервер - компьютер, управляющий доступом в Интернет.

Он требуется для распределения и ограничения доступа в Интернет, отслеживания «утечки» трафика, дополнительной защиты от вирусов и хакеров из Интернета.

Наименование

Мат. Плата

Процессор

Оперативная память

2x DDR 512Mb Kingston

Maxtor 40Gb UATA

Блок питания (корпус)

LG 15” Studioworks 505E

Клавиатура + мышь

Файл-сервер - компьютер, предназначенный для хранения информации.

Файловый сервер выполняет следующие функции: хранение данных, архивирование данных, передача данных, авторизированный доступ к данным, контроль над сохранением и изменением файлов.

Наименование

Мат. Плата

Gigabyte GA-8i915P-G/i915P/s775

Процессор

Intel Pentium4 -3200E/1Mb 800FSB BOX

Оперативная память

2x DDR 512Mb Kingston

Seagate 300GB SATA

Блок питания (корпус)

LG 15” Studioworks 505E

Клавиатура + мышь

4. Настройки сети

Для соединения компьютеров будем пользоваться TCP/IP - протоколом. Это необходимо для использования некоторых программ и лучшей адресации при передаче информации.

4.1 Виды IP-адресов

Настойки внутри аудиторий будут практически одинаковыми - различие будет только в IP - адресе сегмента и названии группы.

Прежде всего - что такое IP-адрес:

Анатомия IP адресов

Перед погружением в изучение организации подсетей, мы должны усвоить основы IP-адресов.

IP адреса характеризуют сетевые соединения, а НЕ компьютеры!

Прежде всего, выясним основную причину недоразумения - IP адреса не назначаются на компьютеры. IP адреса назначены на сетевые интерфейсы на компьютерах.

А что стоит за этим?

На настоящий момент, много (если не большинство) компьютеров в IP-сети обладают единственным сетевым интерфейсом (и имеют, как следствие, единственный IP адрес). Компьютеры (и другие устройства) могут иметь несколько (если не много) сетевых интерфейсов - и каждый интерфейс будет иметь свой IP адрес.

Так, устройство с 6 работающими интерфейсами (например, маршрутизатор) будет иметь 6 IP адресов - по одному на каждую сеть, с которой он соединен.

Несмотря на это, большинство людей ссылаются на адреса машин, когда это касается IP адреса. Только помните, что это упрощенная форма для IP-адреса конкретного устройства на этом компьютере. Много (если не большая часть) устройств в Internet имеет только один интерфейс и, таким образом, единственный IP адрес.

IP-адреса как "четверка чисел разделенные точками"

В текущей (IPv4) реализации IP адресов, IP адрес состоит из 4-х (8-битовых) байтов - он представляет из себя 32 бита доступной информации. Это приводит к числам, которые являются довольно большими (даже когда написано в представлении десятичных чисел). Поэтому для удобства (и по организационным причинам) IP адреса обычно записываются в виде четырех чисел, разделенных точками. IP адрес

Пример этого - 4 (десятичных) числа разделенные (.) точками.

Поскольку каждое из этих чисел - десятичное представление байта (8 бит), каждое из них может принимать значения из диапазона от 0 до 255 (всего 256 уникальных значений, включая ноль).

Кроме того, часть IP-адреса компьютера определяет сеть, в которой находится данный компьютер, оставшиеся "биты" IP адреса определяют непосредственно компьютер (сетевой интерфейс)

IP-адреса делятся на 5 классов. Эти классы определяются благодаря маске подсети.

Маска подсети делит 32 бита адреса на 2 части. Одна часть - биты определения адреса сети (единицы). Другая часть - биты определения адреса сетевого интерфейса (нули).

Вот список масок первых трех классов сетей (в скобках разложение по битам):

· Класс А - 255.0.0.0

(1111 1111.0000 0000.0000 0000.0000 0000)

· Класс В - 255.255.0.0

(1111 1111.1111 1111.0000 0000.0000 0000)

· Класс С - 255.255.255.0

(1111 1111.1111 1111.1111 1111.0000 0000)

Из этих масок видно, что в классе А может быть мало сегментов, но много адресов компьютеров в каждом сегменте. В классе С - наоборот много сегментов, мало - адресов.

В каждом из классов могут использоваться только определенные IP-адреса:

Класс А: 0.0.0.0 - 127.0.0.0

Класс В: 128.0.0.0 - 191.255.0.0

Класс С: 192.0.0.0 - 223.255.255.0

Кроме этих классов существует деление на под сети - когда один из нулевых битов заменяются на единицы (например, 1111 1111.1100 0000.0000 0000.0000 0000). Так мы получаем из одной подсети несколько.

Биты, относящиеся к адресам подсети и интерфейса, не могут «перемешиваться» (1111 0101.1100… - работать не будет).

Таким образом:

Классы D&E (классы мультикастинга): 224.0.0.0 - 225.255.255.255

А это полный список возможных масок подсетей:

интерфейсов

(подсетей)

Зарезервированные IP-адреса для использования в локальных (не связанных с Интернет, то есть которые НИКОГДА не будут в сети ИНТЕРНЕТ) сетях такие:

· Одна сеть класса A 10.0.0.0

· 16 сетей класса B 172.16.0.0 - 172.31.0.0

· 256 сетей класса C 192.168.0.0 - 192.168.255.0

Кроме того нельзя использовать для адресации машин первый и последний адреса каждой подсети. Потому что эти адреса - адреса сети и широковещательный адрес.

Адрес сети - это адрес, в котором адрес хоста все 0 (он требуется адресации самой сети), широковещательный - соответственно, все 1(используется при отправлении информации сразу всем членам сегмента).

4.2 Настойки IP-адресов

Для нашей сети целесообразно использовать сети класса С, так как количество компьютеров в сегментах - небольшое.

Две из наших аудиторий объединены в общее помещение (каб. №30) , а третья - отдельное (каб. №36), сеть учительских машин тоже отдельный сегмент. Отсюда их адреса:

Аудитория №1: IP: 192.168.130.1 - 192.168.130.254

Маска: 255.255.255.0

Аудитория №2: IP: 192.168.230.1 - 192.168.230.254

Маска: 255.255.255.0

Аудитория №3: IP: 192.168.36.1 - 192.168.36.254

Маска: 255.255.255.0

«Учителя»: IP: 192.168.1.1 - 192.168.1.254

Маска: 255.255.255.0

Файл-сервер будет входить в подсеть учителей, его адрес - 192.168.1.254.

А Интернет-сервер имеет два интерфейса - один к сети «Учителя», другой к сети Интернет, его адреса - 192.168.1.253 и адрес с маской, выделенные провайдером Интернета.

Настройка файл-сервера не требуется за исключением установки необходимых программ и «открытия» ресурсов для сети.

Кроме того, каждая подсеть - это отдельная группа, для удобства использования сети. К тому же, названия группам и рабочим станциям сотрудники придумают сами, опять же для их удобства.

4.3 Настройка Интернет-сервера

Для его работы мы решили использовать ОС Windows 2000, потому что это проверенная надежная операционная система.

Настройки для сетевого интерфейса, относящегося к подсети учителей, будут такими:

IP:192.168.1.253

Маска:255.255.255.0

Настройки для сетевого интерфейса подключенного к Интернету выдает провайдер, поэтому мы их описывать не можем.

Для настройки Интернет-сервера мы вабрали программу UserGate.

Полное руководство по использованию и настройке UserGate в приложении №5.

сеть компьютер сервер файл

4.4 Настройки Файл-сервера

Для работы этого сервера мы решили использовать Windows XP. Эта система является самой удобной для использования на файл-сервере.

Настройки сетевого интерфейса:

IP:192.168.1.254

Маска:255.255.255.0

Для простоты настройки и администрирования файлового сервера мы решили открывать папки на доступ: папки с информацией не для студентов - паролятся, остальные держатся просто открытыми для чтения. И всего одна папка открытая для полного доступа без пароля - папка для студентов и их работ.

Для работы в сети необходимо использовать программы, которые ускорили бы этот процесс.

Вот некоторые из них (использовать по возможности последние версии программ):

1. Dr. Web (содержит только антивирус)

2. Антивирус и Антихакер (брандмауэр) Касперского

3. Panda Antivirus (содержит антивирус и брандмауэр)

Это антивирусы - программы которые предотвращают попадание вирусов на компьютер, а так же удаляют, блокируют и лечат их. Устанавливай те любой на выбор.

Советую использовать набор программ - «Lan Tricks». Все эти программы работают вместе (в LanScope есть ссылки на остальные):

1. LanSafety - программа, позволяющая запретить использование скрытых ресурсов.

2. LanScope - программа, очень удобная для сканирования сети.

3. LanSend - программа, позволяющая отправлять сообщения другим пользователям.

4. LanShutDown - программа, позволяющая выключать компьютеры в сети без использования программы сервера.

Есть еще один интересный сборник программ «KillSoft»:

1. KillCopy - скачивание информации по сети. Очень удобная программа - позволяет скачивать файлы частями (т.е. при обрыве связи скаченная часть файла остается у Вас, во вполне рабочем состоянии).

2. KillWatcher - позволяет отслеживать Ваших «посетителей» и при необходимости отключать их от Ваших ресурсов. Можно устанавить максимальное число одновременных подключений к Вашей машине.

Acttive Ports - эта программа будет полезна администраторам. Маленькая, но чрезвычайно полезная тулза, которая отображает все открытые TCP/IP и UDP порты. Также она расскажет вам какое приложение какой порт использует. Кроме того будет полезна для обнаружения троянов и программ удаленного администрирования. К сожалению только для NT/2k/2000/XP

DownLoad Master - Один из самых лучших и удобных менеджеров закачки. Отличный интерфейс, полный комфорт для пользователя, русскоязычность, множество функций и абсолютная бесплатность. позволяет значительно повысить скорость закачки файлов через Интернет с использованием HTTP, HTTPS и FTP протоколов.

RAdmin - программа для удаленного управления компьютером. Полезна в использовании учителями для контроля студентов.

DU Meter - маленькая и простая программа для отслеживания трафика на Вашем компьютере, выдает предупреждения о превышении выставленной нормы.

Список используемой литературы

1. www.sinetic.ru

2. SoftDoc.ru - «строим локальную сеть», Антон Ленников.

3. Курс лекций по дисциплине "Элементы теории передачи информации".

4. Курс лекций по предмету «Сети».

5. forum.ru-board.com

Размещено на Allbest.ru

Подобные документы

    Организационно-штатная структура офисного центра. Выбор и обоснование архитектуры сети. Сервисы конфигурации сервера. Выбор топологии сети. Установка и настройка Active Directory, DNS и файлового сервера под управлением СОС Windows Server 2012 R2.

    курсовая работа , добавлен 10.04.2017

    Выбор и экономическое обоснование топологии сети. Стоимость аренды каналов связи у интернет-провайдеров. Выбор и расчет стоимости активного и пассивного оборудования. Масштабируемость сети по параметрам пользователи, трафик, физический размер сети.

    курсовая работа , добавлен 05.01.2013

    Схема информационных потоков с учетом серверов. Выбор топологии и метода доступа корпоративной сети. Выбор коммутаторов, IP-телефонов и видеофонов, рабочих станций, вспомогательного серверного ПО, сетевых протоколов. Моделирование системы в GPSS.

    курсовая работа , добавлен 24.05.2013

    Разработка схемы локальной вычислительной сети отдела предприятия, включающей общий сервер. Определение коэффициента нагрузки, суммарного трафика сети. Выбор типов физической среды для соединения компьютеров в соответствии со стандартными параметрами.

    контрольная работа , добавлен 05.08.2011

    Разработка структурной схемы компьютерной сети. Планирование топологии сети, настройка серверов. Принципы распределения IP-адресов. Расчет удвоенной задержки распространения сигнала. Моделирование потоков трафика в сети. Сетевые протоколы, их особенности.

    курсовая работа , добавлен 23.12.2015

    Анализ существующих решений для построения сети. Настройка и установка дополнительных программ. Сравнение платформ программного маршрутизатора. Установка DHCP и DNS серверов. Выбор монтажного оборудования. Создание и настройка Active Directory.

    дипломная работа , добавлен 24.03.2015

    Выбор и обоснование архитектуры локальной вычислительной сети образовательного учреждения СОС Ubuntu Server. Описание физической схемы телекоммуникационного оборудования проектируемой сети. Настройка сервера, компьютеров и программного обеспечения сети.

    курсовая работа , добавлен 12.06.2014

    Выбор серверов и компьютеров для пользователей, операционной системы. Расчет сетевого оборудования. Обзор возможных угроз для сети и вариантов их предотвращения. Анализ рынка для приобретения качественных сетевых аксессуаров при минимальных затратах.

    курсовая работа , добавлен 11.07.2012

    Выбор топологии сети и расчет ее главных параметров. Выбор оборудования передачи данных, а также серверов и клиентских машин, расчет его стоимости. Подключение к действующей сети на расстоянии 532 метров. Соединение с сетью Интернет, принципы и этапы.

    курсовая работа , добавлен 05.12.2013

    Объединение компьютеров в сетевую вычислительную сеть. Сеть, построенная на основе сервера. Назначение и краткое описание комплектующих изделий. Эффективность и производительность всей сети. Использование топологии "звезда". Защита файлов пользователей.

Компьютеры и другие компоненты локальной сети могут соединяться между собой различными способами. Используемая схема физического расположения сетевых компонентов называется топологией(Topology). Топология сети определяется геометрической фигурой, образованной линиями связи между компьютерами, или физическим расположением по отношению друг к другу компьютеров, связанных между собой. Топология сети может служить одной из характеристик для сравнения и классификации различных компьютерных сетей.

Существуют три основные топологии построения локальной сети:

– звезда (Star);

– кольцо (Ring);

– шина (Bus).

В сети с топологией «звезда» все компьютеры соединены с центральным компьютером, или (hub – центр). Все данные поступают на центральный узел, который передает их получателю непосредственно. В этой топологии отсутствуют прямые связи между компьютерами сети. Передача всей информации происходит только через хаб (центральный компьютер). В качестве хаба может использоваться специальное устройство – концентратор, представляющий собой многопортовый репитер (repeater – повторитель). Основная функция репитера – получив данные на одном из портов, немедленно перенаправить их на другие порты.

Организация сети с топологией «звезда» проста и эффективна. При обрыве одного из кабелей, соединяющего отдельный компьютер сети с хабом, связь между остальными компьютерами, включенными по данной схеме, останется работоспособной. Если же из строя будет выведен сам центральный компьютер, то передача данных между компьютерами такой сети будет невозможна.

Достоинства звездообразной топологии:

– нарушение соединения в одном месте, кроме центрального узла, не прерывает работы локальной сети;

– при подключении большого количества компьютеров не происходит снижения производительности;

– безопасность информации обеспечивается на высоком уровне, так как компьютеры не получают чужих данных.

Недостатки звездообразной топологии:

– большой расход соединительного кабеля;

– поломка центрального узла приводит к неработоспособности всей сети;

– наращивание сети сопряжено с большими финансовыми затратами.

В топологии типа «кольцо» отсутствуют концевые точки соединения, т.е. сеть получается замкнутой в неразрывное кольцо.

В сети, построенной по кольцевой топологии, данные передаются в одном направлении от одного компьютера «кольца» к другому. Компьютер не передает информацию, пока не получит специальный маркер.

Достоинства кольцевой топологии:

– при подключении большого количества компьютеров происходит лишь незначительное снижение производительности.

Недостатки кольцевой топологии:

– нарушение соединения в одном месте приводит к прекращению работы всей локальной сети;

– безопасность информации обеспечивается не на очень высоком уровне: данные, посланные одним компьютером сети другому, могут быть легко перехвачены любым из компьютеров сети, которому они не предназначены, что может нарушить конфиденциальность передаваемой информации.

Топология «шина» использует для передачи данных один общий канал связи (чаще всего выполненный на основе коаксиального кабеля), к которому подключаются все компьютеры локальной сети.

Работа в сети с топологией «шина» осуществляется следующим образом. Когда один из компьютеров локальной сети с шинной топологией отправляет данные, они передаются по кабелю в обоих направлениях и принимаются всеми без исключения компьютерами, но использует их только тот из них, кому они были предназначены. Данные в сети с топологией «шина» могут следовать в любом направлении одновременно. На противоположных концах шины устанавливаются специальные заглушки – терминаторы.

Достоинства шинной топологии:

– легкость наращивания сети;

– не очень высокая стоимость оборудования.

Недостатки шинной топологии:

– нарушение соединения в одном месте приводит к неработоспособности всей локальной сети;

– при подключении большого количества компьютеров к одной шине происходит резкое снижение производительности;

– безопасность информации обеспечивается не на высоком уровне

Рассмотрев топологии локальных сетей я выбрала топологию-звезда. Из-за достоинств этой топологии. Рассмотрим данную топологию подробней. Звезда – это наиболее распространенная в России и Европе топология. Звезда имеет центральный блок – концентратор (hub) или коммутатор (switch). Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте сети RelCom. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Структура топологии ЛВС в виде «звезды»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Центральный узел управления – сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра. Но есть и недостаток: если центральный компонент выйдет из строя – остановится вся сеть. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором (коммутатором)), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры по сети этот сбой не повлияет.

В первую очередь определитесь с типом несущей.
Дело в том, что использование коаксиального кабеля или витой пары подразумевает принципиально различные архитектуры локальной сети.

В первом случае сеть будет строиться по принципу «общей шины» - все входящие в нее компьютеры последовательно соединяются друг с другом в цепочку при помощи отрезков кабеля, образуя единую магистраль.

Это довольно удобно, если все пользователи вашей сети живут на одной лестничной площадке или в квартирах, расположенных одна под другой.
Однако, если компьютеры разбросаны по всему подъезду (или дому), коаксиальный кабель будет петлять, что неудобно уже на этапе первичной прокладки сети.

Если же потребуется подключить к ней еще несколько новых пользователей, проблемы возрастут в геометрической прогрессии.
К тому же «общая шина» опасна: если будет испорчен отрезок сети между двумя компьютерами, то отключается вся сеть.

Скорость передачи по тонкому коаксиальному кабелю (по своей структуре он аналогичен тому, который применяется в телеантеннах - только сопротивление в нем составляет 50 Ом) ограничена.
Она не более 10 Мбит/с.

Витая пара позволяет создать совершенно иную сетевую архитектуру.
Кабель витой пары аналогичен обычному телефонному, только вместо 2 (или 4) проводов в нем используется 8, разделенных на 4 пары.

Витая пара - более гибкий и практичный кабель, удобный в укладке и хорошо защищенный от внешнего воздействия.
Однако главный плюс этого варианта в другом: на витой паре основывается локальная сеть типа «звезда» или «дерево» - в центре ее находится коммуникационное устройство (в простейшем случае - концентратор) с несколькими портами, к каждому из которых посредством кабеля присоединяется конечный компьютер …

При помощи витой пары можно создавать сети с пропускной способностью в 10 Мбит/с, 100 Мбит/с (Fast Ethernet) и 1000 Мбит/с (Gigabit Ethernet).

Драйвер AMD Radeon Software Adrenalin Edition 19.9.2 Optional

Новая версия драйвера AMD Radeon Software Adrenalin Edition 19.9.2 Optional повышает производительность в игре «Borderlands 3» и добавляет поддержку технологии коррекции изображения Radeon Image Sharpening.

Накопительное обновление Windows 10 1903 KB4515384 (добавлено)

10 сентября 2019 г. Microsoft выпустила накопительное обновление для Windows 10 версии 1903 - KB4515384 с рядом улучшений безопасности и исправлением ошибки, которая нарушила работу Windows Search и вызвала высокую загрузку ЦП.

Драйвер Game Ready GeForce 436.30 WHQL

Компания NVIDIA выпустила пакет драйверов Game Ready GeForce 436.30 WHQL, который предназначен для оптимизации в играх: «Gears 5», «Borderlands 3» и «Call of Duty: Modern Warfare», «FIFA 20», «The Surge 2» и «Code Vein», исправляет ряд ошибок, замеченных в предыдущих релизах, и расширяет перечень дисплеев категории G-Sync Compatible.

Топология «кольцо» - это топология, в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приёмник. Это позволяет отказаться от применения внешних терминаторов.
Каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всём кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Чётко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надёжность сети, потому что выход его из строя сразу же парализует весь обмен.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу.
Рабочая станция может передавать информацию другой рабочей станции, только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.
Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Термин топология сети означает способ соединения компьютеров в сеть. Вы также можете услышать другие названия – структура сети или конфигурация сети (это одно и то же). Кроме того, понятие топологии включает множество правил, которые определяют места размещения компьютеров, способы прокладки кабеля, способы размещения связующего оборудования и многое другое. На сегодняшний день сформировались и устоялись несколько основных топологий. Из них можно отметить “шину ”, “кольцо ” и “звезду ”.

Топология “шина”

Топология шина (или, как ее еще часто называют общая шина или магистраль ) предполагает использование одного кабеля, к которому подсоединены все рабочие станции. Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

Достоинства топологии “шина”:

  • простота настройки;
  • относительная простота монтажа и дешевизна, если все рабочие станции расположены рядом;
  • выход из строя одной или нескольких рабочих станций никак не отражается на работе всей сети.

Недостатки топологии “шина”:

  • неполадки шины в любом месте (обрыв кабеля, выход из строя сетевого коннектора) приводят к неработоспособности сети;
  • сложность поиска неисправностей;
  • низкая производительность – в каждый момент времени только один компьютер может передавать данные в сеть, с увеличением числа рабочих станций производительность сети падает;
  • плохая масштабируемость – для добавления новых рабочих станций необходимо заменять участки существующей шины.

Именно по топологии “шина” строились локальные сети на коаксиальном кабеле . В этом случае в качестве шины выступали отрезки коаксиального кабеля, соединенные Т-коннекторами. Шина прокладывалась через все помещения и подходила к каждому компьютеру. Боковой вывод Т-коннектора вставлялся в разъем на сетевой карте. Вот как это выглядело:Сейчас такие сети безнадежно устарели и повсюду заменены “звездой” на витой паре, однако оборудование под коаксиальный кабель еще можно увидеть на некоторых предприятиях.

Топология “кольцо”

Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера – он передает их дальше по кольцу, в ином случае они дальше не передаются.

Достоинства кольцевой топологии:

  • простота установки;
  • практически полное отсутствие дополнительного оборудования;
  • возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети.

Однако “кольцо” имеет и существенные недостатки:

  • каждая рабочая станция должна активно участвовать в пересылке информации; в случае выхода из строя хотя бы одной из них или обрыва кабеля – работа всей сети останавливается;
  • подключение новой рабочей станции требует краткосрочного выключения сети, поскольку во время установки нового ПК кольцо должно быть разомкнуто;
  • сложность конфигурирования и настройки;
  • сложность поиска неисправностей.

Кольцевая топология сети используется довольно редко. Основное применение она нашла в оптоволоконных сетях стандарта Token Ring.

Топология “звезда”

Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем. При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Топология “звезда” на сегодняшний день стала основной при построении локальных сетей. Это произошло благодаря ее многочисленным достоинствам:

  • выход из строя одной рабочей станции или повреждение ее кабеля не отражается на работе всей сети в целом;
  • отличная масштабируемость: для подключения новой рабочей станции достаточно проложить от коммутатора отдельный кабель;
  • легкий поиск и устранение неисправностей и обрывов в сети;
  • высокая производительность;
  • простота настройки и администрирования;
  • в сеть легко встраивается дополнительное оборудование.

Однако, как и любая топология, “звезда” не лишена недостатков:

  • выход из строя центрального коммутатора обернется неработоспособностью всей сети;
  • дополнительные затраты на сетевое оборудование – устройство, к которому будут подключены все компьютеры сети (коммутатор);
  • число рабочих станций ограничено количеством портов в центральном коммутаторе.

Звезда – самая распространенная топология для проводных и беспроводных сетей. Примером звездообразной топологии является сеть с кабелем типа витая пара, и коммутатором в качестве центрального устройства. Именно такие сети встречаются в большинстве организаций.